(二)随机变量的数字特征:探索概率分布的关键指标

文章目录

  • [🍋1. 随机变量的数学期望](#🍋1. 随机变量的数学期望)
    • [🍋1.1 离散型随机变量的数学期望](#🍋1.1 离散型随机变量的数学期望)
    • [🍋1.2 连续型随机变量的数学期望](#🍋1.2 连续型随机变量的数学期望)
  • [🍋2. 随机变量函数的数学期望](#🍋2. 随机变量函数的数学期望)
    • [🍋2.1 一维随机变量函数的数学期望](#🍋2.1 一维随机变量函数的数学期望)
    • [🍋2.2 二维随机变量函数的数学期望](#🍋2.2 二维随机变量函数的数学期望)
  • [🍋3. 数学期望的性质](#🍋3. 数学期望的性质)
  • [🍋4. 方差的定义](#🍋4. 方差的定义)
  • [🍋5. 方差的性质](#🍋5. 方差的性质)
  • [🍋6. 协方差与相关系数](#🍋6. 协方差与相关系数)

🍋1. 随机变量的数学期望

🍋1.1 离散型随机变量的数学期望

  • 0-1分布

0-1分布是一种二值分布,表示事件发生与否的概率,通常用p表示成功的概率,1-p表示失败的概率。其数学期望为E(X) = p。

  • 二项分布

二项分布描述了n次独立重复的二值试验,其中每次试验成功的概率为p。其数学期望为E(X) = np。

  • 泊松分布

泊松分布适用于描述单位时间或空间内随机事件发生的次数,如电话呼叫、到达客户等。其数学期望为E(X) = λ,其中λ表示单位时间或空间内平均发生的次数。

  • 几何分布

几何分布用于描述在n次独立重复的伯努利试验中首次成功发生的次数。其数学期望为E(X) = 1/p,其中p表示每次试验成功的概率。

🍋1.2 连续型随机变量的数学期望

  • 均匀分布

均匀分布在区间[a, b]内等可能地取任何值。其数学期望为E(X) = (a + b) / 2。

  • 指数分布

指数分布描述了连续事件发生的时间间隔,其数学期望为E(X) = 1/λ,其中λ为事件发生率。

  • 正态分布

正态分布是自然界中最常见的分布之一,其数学期望为E(X) = μ,其中μ为均值。

🍋2. 随机变量函数的数学期望

🍋2.1 一维随机变量函数的数学期望

假设我们有一个一维随机变量 X,以及一个实值函数 g(X)。一维随机变量函数 g(X) 的数学期望,通常表示为 E[g(X)],是对该函数在随机变量 X 上的期望值。具体计算方法如下:

对于离散型随机变量 XX,数学期望 E[g(X)]E[g(X)] 的计算方法为:

E[g(X)]=x∑​g(x)P(X=x)

其中,∑x表示对所有可能的取值 x 求和,P(X=x) 是 X 等于 x 的概率质量函数。

对于连续型随机变量 X,数学期望 E[g(X)] 的计算方法为:

E[g(X)]=∫g(x)f(x)dx

其中,∫ 表示对所有可能的取值 x 进行积分,f(x) 是 X 的概率密度函数。

🍋2.2 二维随机变量函数的数学期望

对于二维随机变量,我们可以考虑一个函数 g(X,Y),其中 X 和 Y 是两个随机变量。二维随机变量函数 g(X,Y) 的数学期望,通常表示为 E[g(X,Y)],是对该函数在随机变量 X 和 Y 上的期望值。具体计算方法如下:

对于离散型随机变量 X 和 Y,数学期望E[g(X,Y)] 的计算方法为:

E[g(X,Y)]=x∑​y∑​g(x,y)P(X=x,Y=y)

其中,∑x​ 和 ∑y​ 分别表示对所有可能的取值 x 和 y 求和,P(X=x,Y=y) 是联合概率质量函数。

对于连续型随机变量 X 和 Y,数学期望 E[g(X,Y)] 的计算方法为:

E[g(X,Y)]=∬g(x,y)f(x,y)dxdy

其中,∬ 表示对所有可能的取值 x和 y 进行二重积分,f(x,y) 是 X 和 Y 的联合概率密度函数。

🍋3. 数学期望的性质

  1. 线性性质:数学期望具有线性性质,即对于任意常数 aa 和 bb 以及随机变量 XX 和 YY,有以下公式:

    E(aX+bY)=aE(X)+bE(Y)E(aX+bY)=aE(X)+bE(Y)

  2. 常数性质:如果 cc 是一个常数,那么对于任何随机变量 XX,都有:

    E©=cE©=c

  3. 独立性质:如果 XX 和 YY 是独立的随机变量,那么它们的联合数学期望等于各自数学期望的乘积:

    E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)

  4. 非负性质:对于任何非负随机变量 XX,其数学期望也是非负的:

    如果 X≥0X≥0,则 E(X)≥0E(X)≥0

  5. 单调性质:如果对于所有的样本点, XX 总是小于等于 YY,则 E(X)≤E(Y)E(X)≤E(Y)。

  6. 凹凸性质:对于任意函数 g(X)g(X),有以下凹凸性质:

    如果 g(X)g(X) 是凸函数,则 E[g(X)]≥g(E(X))E[g(X)]≥g(E(X))

    如果 g(X)g(X) 是凹函数,则 E[g(X)]≤g(E(X))E[g(X)]≤g(E(X))

  7. 数学期望的绝对值性质:对于任何随机变量 XX,有:

    ∣E(X)∣≤E(∣X∣)∣E(X)∣≤E(∣X∣)

  8. 常见分布的数学期望:对于特定的常见分布,数学期望具有相应的性质。例如,正态分布的数学期望等于其均值,指数分布的数学期望等于其倒数的平均,等等。

🍋4. 方差的定义

方差是用来衡量随机变量数据分散程度的统计量。它衡量了随机变量的取值在其数学期望周围的离散程度。方差的定义如下:

对于一个随机变量 X,其数学期望为 E(X),则它的方差 Var(X) 定义为:

Var(X)=E[(X−E(X))^2]

其中,X−E(X) 表示随机变量 XX 的每个取值与其数学期望 E(X) 之间的差距,然后将这些差距平方,再计算其数学期望。

方差的计算步骤如下:

  • 对于每个随机变量 X 的取值 x,计算其与数学期望 E(X) 的差值:X−E(X)。
  • 将每个差值平方:(X−E(X))^2。
  • 对所有这些平方差值求期望值,即对所有可能的 x 进行加权平均。

方差表示了随机变量数据分布的离散程度。如果方差较小,意味着数据点较接近数学期望,分布较集中;如果方差较大,说明数据点相对较远离数学期望,分布较分散。

🍋5. 方差的性质

方差(Variance)是一个重要的统计量,用于衡量随机变量的离散程度。它具有一些重要的性质,这些性质在统计分析和概率论中经常用于推导和计算。以下是方差的主要性质:

  1. 非负性:方差始终是非负数。

    Var(X)≥0

  2. 方差与数学期望的关系:方差可以通过数学期望来表示。

    Var(X)=E[(X−E(X))^2]

  3. 常数倍性质:如果 a 是一个常数,那么随机变量 aX 的方差是 a^2 乘以 X 的方差。

    Var(aX)=a^2Var(X)

  4. 加法性质:对于两个随机变量 X 和 Y,它们的和 X+Y 的方差等于它们各自方差的和,加上它们的协方差(如果有)。

    Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)

  5. 常数的方差为零:对于任何常数 c,Var©=0。

    Var©=0

  6. 独立性质:如果随机变量 X 和 Y 独立,它们的和 X+Y 的方差等于它们各自的方差之和。

    如果 X 和 Y 独立,那么 Var(X+Y)=Var(X)+Var(Y)

  7. 常见分布的方差:对于某些常见的概率分布,方差具有特定的表达式,例如:

    对于二项分布:Var(X)=np(1−p),其中 n 是试验次数,p 是成功的概率。

    对于泊松分布:Var(X)=λ,其中 λ 是泊松分布的均值和方差。

    对于正态分布:Var(X)=σ^2,其中 σ 是标准差。

  8. 方差的非负性证明:方差的非负性是方差的基本性质,可以通过方差的定义以及平方的非负性证明得出。证明中使用了 E[(X−E(X))^2] 的平方永远是非负的性质。

分布 期望 方差
0-1分布 p p(1-p)
二项分布 np np(1-p)
泊松分布 λ λ
几何分布 1/p (1-p)/p^2
均匀分布 (a+b)/2 (b-a)^2/12
指数分布 1/λ 1/λ^2
正态分布 μ σ^2

🍋6. 协方差与相关系数

协方差(Covariance):

协方差用于衡量两个随机变量的变化趋势是否一致。具体而言,协方差测量了两个随机变量(假设为 X 和 Y)之间的线性关系。协方差的定义如下:

对于两个随机变量 X 和 Y,其协方差 Cov(X,Y) 定义为:

其中,E(X)和 E(Y) 分别是 X 和 Y 的数学期望。

协方差的性质如下:

  • 如果 X 和 Y 之间存在正相关关系(即一个变量增加,另一个也增加),则协方差为正数。
  • 如果 X 和 Y 之间存在负相关关系(即一个变量增加,另一个减少),则协方差为负数。
  • 如果 X 和 Y 之间没有线性关系,协方差可能接近于零,但不能得出它们之间没有关系的结论。

然而,协方差的取值范围没有上限或下限,因此很难对其大小进行直观解释。为了更好地理解两个随机变量之间的关系,通常使用相关系数。

相关系数(Correlation Coefficient):

相关系数是协方差的标准化版本,它将协方差除以两个随机变量的标准差,从而使其取值范围在 -1 到 1 之间。相关系数表示了两个随机变量之间的线性关系强度和方向。最常见的相关系数是皮尔逊相关系数(Pearson Correlation Coefficient)。

皮尔逊相关系数(ρρ)的定义如下:

其中,Cov(X,Y) 是 X 和 Y 的协方差,σX​ 和 σY​ 分别是 X 和 Y 的标准差。

皮尔逊相关系数的性质如下:

  • ρ 的取值范围在 -1 到 1 之间。当 ρ=1 时,表示完全正相关;当 ρ=−1 时,表示完全负相关;当 ρ=0 时,表示没有线性关系。
  • ρ 的符号表示变量之间的关系方向。正值表示正相关,负值表示负相关。
  • 皮尔逊相关系数对线性关系敏感,如果关系是非线性的,它可能无法准确捕捉到这种关系。

总之,协方差和相关系数是用于描述随机变量之间关系的重要工具。协方差衡量了变量之间的总体关联性,而相关系数则在协方差的基础上提供了标准化的度量,更容易理解和解释。在数据分析中,它们通常用于研究变量之间的关系,特别是在回归分析和多元统计中。

挑战与创造都是很痛苦的,但是很充实。

相关推荐
迅易科技1 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神2 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI3 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME4 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室5 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself5 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董6 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee6 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa6 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai