OpenCV自学笔记十七:傅里叶变换

1、Numpy实现傅里叶变换

傅里叶变换(Fourier Transform)是一种将信号从时域转换到频域的数学变换。它将一个连续或离散的时域信号分解为一组正弦和余弦函数的复合。

在Python中,可以使用NumPy库来实现傅里叶变换。具体步骤如下:

  1. 导入NumPy库:

    import numpy as np

  2. 准备输入信号数据,可以是离散的时间序列数据或连续的函数。假设我们有一个离散的信号`x`,包含N个采样点:

    x = np.array([5, 3, 6, 2, 8, 7])

  3. 使用NumPy的`fft.fft()`函数进行傅里叶变换:

    X = np.fft.fft(x)

这将返回一个复数数组`X`,其中包含了信号在频域的表示。

  1. 对结果进行频谱转换,得到幅度谱和相位谱。可以使用`np.abs()`函数计算幅度谱,使用`np.angle()`函数计算相位谱:

    amplitude_spectrum = np.abs(X)

    phase_spectrum = np.angle(X)

  2. 可选:对频域信号做其他处理。例如,可以将某些频率设置为零,然后使用逆傅立叶变换(`np.fft.ifft()`)将信号从频域转换回时域。

下面是一个完整的示例代码,演示了如何使用NumPy进行傅里叶变换:

复制代码
import numpy as np

# 输入信号

x = np.array([5, 3, 6, 2, 8, 7])

# 傅里叶变换

X = np.fft.fft(x)

# 频谱转换

amplitude_spectrum = np.abs(X)

phase_spectrum = np.angle(X)

print("Amplitude Spectrum:", amplitude_spectrum)

print("Phase Spectrum:", phase_spectrum)

这个示例将计算输入信号`x`的傅里叶变换,并输出幅度谱和相位谱。

需要注意的是,以上示例是针对离散信号的傅里叶变换。如果要处理连续信号,可以使用NumPy中的`fft.fft()`函数的连续版本`np.fft.fftn()`或`np.fft.fftshift()`来进行相应的处理。

2、OpenCV实现傅里叶变换

傅里叶变换(Fourier Transform)是一种将时域信号转换为频域信号的数学工具,常用于图像处理和信号处理领域。OpenCV库提供了对傅里叶变换的支持。下面是傅里叶变换的原理和一个示例:

傅里叶变换将一个连续时间域信号表示为一组正弦和余弦函数的加权和。在图像处理中,我们可以将二维图像看作是一个二维离散信号。使用傅里叶变换,我们可以将图像从空域(时域)转换到频域。频域中的每个点表示了相应频率的成分在图像中的贡献。

示例:

下面是一个使用OpenCV实现傅里叶变换的简单示例代码:

复制代码
​
import cv2

import numpy as np

from matplotlib import pyplot as plt

# 读取图像

img = cv2.imread('image.jpg', 0)

# 进行傅里叶变换

f = np.fft.fft2(img)

fshift = np.fft.fftshift(f)

magnitude_spectrum = 20 * np.log(np.abs(fshift))

# 显示原始图像和频谱图

plt.subplot(121), plt.imshow(img, cmap='gray')

plt.title('Input Image'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')

plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])

plt.show()

​ 

在上面的示例中,我们首先使用`cv2.imread()`函数读取图像,并将其转换为灰度图像。然后使用`np.fft.fft2()`函数对灰度图像进行二维傅里叶变换。接下来,使用`np.fft.fftshift()`函数将频谱移到中心位置,并使用`20 * np.log(np.abs())`计算频谱的幅度谱(以对数尺度显示)。最后,使用`plt.subplot()`和`plt.imshow()`函数显示原始图像和频谱图。

运行上述代码,你将得到原始图像和对应的频谱图。频谱图中的亮度表示相应频率的成分在图像中的贡献大小。

相关推荐
EasyGBS3 分钟前
国标GB28181视频平台EasyCVR实用方案:如何实现画面拉伸
人工智能·音视频
科达嘉电子15 分钟前
高性能电感器,助力AI服务器高效率、低功耗发展
人工智能
亲持红叶17 分钟前
transformer-实现单层Decoder 层
人工智能·深度学习·transformer
孙先生14818 分钟前
AIGC重构元宇宙:从内容生成到沉浸式体验的技术革命
人工智能·aigc
Want59521 分钟前
DeepSeek破界而来:重构大规模深度检索的算力与边界
人工智能·重构·aigc
奔跑吧邓邓子23 分钟前
DeepSeek+即梦:AI视频创作从0到1全突破
人工智能·deepseek·ai视频制作·即梦
小黄人202524 分钟前
NVIDIA高级辅助驾驶领域的创新实践与云计算教育启示
人工智能·云计算·自动驾驶·ai教育
攻城狮7号31 分钟前
20250429-李彦宏口中的MCP:AI时代的“万能接口“
人工智能·python·ai·mcp
凯子坚持 c2 小时前
从 0 到 1:ComfyUI AI 工作流抠图构建全实践
大数据·人工智能
背太阳的牧羊人2 小时前
OpenAI Embedding 和密集检索(如 BERT/DPR)进行语义相似度搜索有什么区别和联系
人工智能·bert·embedding