在OpenCV中,支持向量机(Support Vector Machine,简称SVM)算法的实现包含在ml模块中。SVM是一种常用的监督学习算法,主要用于分类问题。
SVM的原理:通过在特征空间中找到一个最优超平面,将不同类别的样本分开。该超平面被定义为使得两个类别的间隔最大化的决策边界,而且只有少数样本点处于边界上,这些样本点被称为支持向量。对于线性可分的数据集,可以使用线性SVM进行分类;对于线性不可分的数据集,可以使用非线性SVM,引入核函数将数据映射到高维特征空间进行分类。
在OpenCV中,SVM的函数为`cv.ml.SVM_create()`。下面是一个使用SVM算法进行二分类的示例代码:
import cv2 as cv
import numpy as np
# 创建SVM对象
svm = cv.ml.SVM_create()
# 设置SVM参数
svm.setType(cv.ml.SVM_C_SVC)
svm.setKernel(cv.ml.SVM_LINEAR)
# 准备训练数据
trainData = np.array([[0, 0], [1, 1]], dtype=np.float32)
responses = np.array([0, 1], dtype=np.int32)
# 训练SVM模型
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
# 准备测试数据
testData = np.array([[2, 2]], dtype=np.float32)
# 使用SVM分类
result = svm.predict(testData)
print("结果:", result[1].item())
在上述示例中,我们首先创建了一个SVM对象。然后,通过`setType()`函数设置SVM的类型为C_SVC(多类别分类)。使用`setKernel()`函数设置内核函数为线性核函数。接下来,准备训练数据`trainData`和对应的标签`responses`。使用`train()`函数对SVM模型进行训练。最后,准备测试数据`testData`,并使用`predict()`函数对测试数据进行分类预测。
运行以上代码,将输出结果为`结果: 1.0`,表示测试数据被分类为标签1。
除了二分类问题,SVM算法还可以用于多类别分类、回归问题以及异常检测等场景。不同的问题需要使用不同的SVM类型和参数设置,具体可参考OpenCV的文档和函数说明。