OpenCV自学笔记二十四:支持向量机

在OpenCV中,支持向量机(Support Vector Machine,简称SVM)算法的实现包含在ml模块中。SVM是一种常用的监督学习算法,主要用于分类问题。

SVM的原理:通过在特征空间中找到一个最优超平面,将不同类别的样本分开。该超平面被定义为使得两个类别的间隔最大化的决策边界,而且只有少数样本点处于边界上,这些样本点被称为支持向量。对于线性可分的数据集,可以使用线性SVM进行分类;对于线性不可分的数据集,可以使用非线性SVM,引入核函数将数据映射到高维特征空间进行分类。

在OpenCV中,SVM的函数为`cv.ml.SVM_create()`。下面是一个使用SVM算法进行二分类的示例代码:

复制代码
import cv2 as cv

import numpy as np

# 创建SVM对象

svm = cv.ml.SVM_create()

# 设置SVM参数

svm.setType(cv.ml.SVM_C_SVC)

svm.setKernel(cv.ml.SVM_LINEAR)

# 准备训练数据

trainData = np.array([[0, 0], [1, 1]], dtype=np.float32)

responses = np.array([0, 1], dtype=np.int32)

# 训练SVM模型

svm.train(trainData, cv.ml.ROW_SAMPLE, responses)

# 准备测试数据

testData = np.array([[2, 2]], dtype=np.float32)

# 使用SVM分类

result = svm.predict(testData)

print("结果:", result[1].item())

在上述示例中,我们首先创建了一个SVM对象。然后,通过`setType()`函数设置SVM的类型为C_SVC(多类别分类)。使用`setKernel()`函数设置内核函数为线性核函数。接下来,准备训练数据`trainData`和对应的标签`responses`。使用`train()`函数对SVM模型进行训练。最后,准备测试数据`testData`,并使用`predict()`函数对测试数据进行分类预测。

运行以上代码,将输出结果为`结果: 1.0`,表示测试数据被分类为标签1。

除了二分类问题,SVM算法还可以用于多类别分类、回归问题以及异常检测等场景。不同的问题需要使用不同的SVM类型和参数设置,具体可参考OpenCV的文档和函数说明。

相关推荐
航Hang*10 小时前
Photoshop 图形与图像处理技术——第8章:图像的色彩与色彩调整和图像的输出与优化
图像处理·笔记·ui·photoshop
ji_shuke11 小时前
opencv-mobile 和 ncnn-android 环境配置
android·前端·javascript·人工智能·opencv
小桥流水---人工智能11 小时前
风电机组故障诊断与状态监测方法的研究局限性整理(背景笔记)
笔记
菩提小狗12 小时前
小迪安全笔记_第4天|扩展&整理|30+种加密编码进制全解析:特点、用处与实战识别指南|小迪安全笔记|网络安全|
笔记·安全·web安全
xian_wwq12 小时前
【学习笔记】OSI安全架构体系
网络·笔记·学习
love530love12 小时前
Windows 11 下再次成功本地编译 Flash-Attention 2.8.3 并生成自定义 Wheel(RTX 3090 sm_86 专属版)
人工智能·windows·笔记·编译·flash_attn·flash-attn·flash-attention
中屹指纹浏览器14 小时前
2025 硬核技术:中屹指纹浏览器进程级沙箱隔离,筑牢多开防关联壁垒
经验分享·笔记
再睡一夏就好14 小时前
多线程并发编程核心:互斥与同步的深度解析及生产者消费者模型两种实现
linux·运维·服务器·jvm·c++·笔记
m0_7269659814 小时前
RAG源代码笔记JAVA-高级RAG
笔记·ai·agent·rag
复业思维2024010814 小时前
Altium Designer (24.2.2)中更改库以及保持器件参数不变
笔记·学习·硬件工程