OpenCV自学笔记二十四:支持向量机

在OpenCV中,支持向量机(Support Vector Machine,简称SVM)算法的实现包含在ml模块中。SVM是一种常用的监督学习算法,主要用于分类问题。

SVM的原理:通过在特征空间中找到一个最优超平面,将不同类别的样本分开。该超平面被定义为使得两个类别的间隔最大化的决策边界,而且只有少数样本点处于边界上,这些样本点被称为支持向量。对于线性可分的数据集,可以使用线性SVM进行分类;对于线性不可分的数据集,可以使用非线性SVM,引入核函数将数据映射到高维特征空间进行分类。

在OpenCV中,SVM的函数为`cv.ml.SVM_create()`。下面是一个使用SVM算法进行二分类的示例代码:

复制代码
import cv2 as cv

import numpy as np

# 创建SVM对象

svm = cv.ml.SVM_create()

# 设置SVM参数

svm.setType(cv.ml.SVM_C_SVC)

svm.setKernel(cv.ml.SVM_LINEAR)

# 准备训练数据

trainData = np.array([[0, 0], [1, 1]], dtype=np.float32)

responses = np.array([0, 1], dtype=np.int32)

# 训练SVM模型

svm.train(trainData, cv.ml.ROW_SAMPLE, responses)

# 准备测试数据

testData = np.array([[2, 2]], dtype=np.float32)

# 使用SVM分类

result = svm.predict(testData)

print("结果:", result[1].item())

在上述示例中,我们首先创建了一个SVM对象。然后,通过`setType()`函数设置SVM的类型为C_SVC(多类别分类)。使用`setKernel()`函数设置内核函数为线性核函数。接下来,准备训练数据`trainData`和对应的标签`responses`。使用`train()`函数对SVM模型进行训练。最后,准备测试数据`testData`,并使用`predict()`函数对测试数据进行分类预测。

运行以上代码,将输出结果为`结果: 1.0`,表示测试数据被分类为标签1。

除了二分类问题,SVM算法还可以用于多类别分类、回归问题以及异常检测等场景。不同的问题需要使用不同的SVM类型和参数设置,具体可参考OpenCV的文档和函数说明。

相关推荐
我真的是大笨蛋1 天前
K8S-Pod(下)
java·笔记·云原生·容器·kubernetes
梁小憨憨1 天前
zotero扩容
人工智能·笔记
Hello_Embed1 天前
STM32HAL 快速入门(十九):UART 编程(二)—— 中断方式实现收发及局限分析
笔记·stm32·单片机·嵌入式硬件·学习
笑鸿的学习笔记1 天前
JavaScript笔记之JS 和 HTML5 的关系
javascript·笔记·html5
小王爱学人工智能1 天前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
湫兮之风1 天前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉
用户931356002741 天前
文件包含漏洞
笔记
lingggggaaaa1 天前
小迪安全v2023学习笔记(七十九讲)—— 中间件安全&IIS&Apache&Tomcat&Nginx&CVE
笔记·学习·安全·web安全·网络安全·中间件·apache
我登哥MVP1 天前
Java File 类学习笔记
java·笔记·学习
天天开心a2 天前
OSPF基础部分知识点
网络·笔记·学习·智能路由器·hcip