OpenCV之VideoCapture

VideoCaptrue类对视频进行读取操作以及调用摄像头。

头文件:

复制代码
#include <opencv2/video.hpp>

主要函数如下:

构造函数

复制代码
C++: VideoCapture::VideoCapture();
C++: VideoCapture::VideoCapture(const string& filename);
C++: VideoCapture::VideoCapture(int device);

参数:

filename -- 打开的视频文件名。

device -- 打开的视频捕获设备id ,如果只有一个摄像头可以填0,表示打开默认的摄像头。

基本功能

打开视频文件或者设备

复制代码
C++: bool VideoCapture::open(const string& filename);
C++: bool VideoCapture::open(int device);

打开一个视频文件或者打开一个捕获视频的设备(也就是摄像头)

参数:

filename -- 打开的视频文件名。

device -- 打开的视频捕获设备id ,如果只有一个摄像头可以填0,表示打开默认的摄像头。

判断打开是否成功

复制代码
C++: bool VideoCapture::isOpened();

成功返回true,,否则false.

关闭视频文件或者摄像头

复制代码
C++: void VideoCapture::release();

抓取下一帧

复制代码
C++: bool VideoCapture::grab();//需与retrieve结合使用
C++: bool VideoCapture::retrieve(Mat& image, int channel=0);
C++: VideoCapture& VideoCapture::operator>>(Mat& image);
C++: bool VideoCapture::read(Mat& image);

获取视频属性

复制代码
C++: double VideoCapture::get(int propId);

如果属性不支持,将会返回0。

参数:属性的ID。

属性的ID可以是下面的之一:

复制代码
CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds or video capture timestamp.
CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
CV_CAP_PROP_FPS Frame rate.
CV_CAP_PROP_FOURCC 4-character code of codec.
CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
CV_CAP_PROP_HUE Hue of the image (only for cameras).
CV_CAP_PROP_GAIN Gain of the image (only for cameras).
CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
CV_CAP_PROP_WHITE_BALANCE Currently not supported
CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)

设置属性

复制代码
bool VideoCapture::set(int propertyId, double value)

成功返回true,否则返回false

参数:第一个是属性ID,第二个是该属性要设置的值。

属性ID如下:

复制代码
CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
CV_CAP_PROP_FPS Frame rate.
CV_CAP_PROP_FOURCC 4-character code of codec.
CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
CV_CAP_PROP_HUE Hue of the image (only for cameras).
CV_CAP_PROP_GAIN Gain of the image (only for cameras).
CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
CV_CAP_PROP_WHITE_BALANCE Currently unsupported
CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)

实例:获取任意一帧

1 实例及初始化:

复制代码
cv::VideoCapture capture.open("Old Film Effect.mp4");

2 设置需要读取帧的位置:

复制代码
capture.set(cv::CAP_PROP_POS_FRAMES,10);//设置读取第10帧

3 读取帧

复制代码
Mat frame;
if (capture.read(frame))
   imwrite("d:/a.bmp",frame);
相关推荐
_一条咸鱼_42 分钟前
深入剖析 AI 大模型的反向传播原理
人工智能·深度学习·机器学习
(initial)1 小时前
超越简单检索:探索知识图谱与大型语言模型的协同进化之路
人工智能·语言模型·知识图谱
Jamence1 小时前
多模态大语言模型arxiv论文略读(九)
人工智能·语言模型·自然语言处理
@MrLiu1 小时前
# 基于BERT的文本分类
人工智能·自然语言处理·分类·bert
缘友一世1 小时前
Hugging Face模型微调训练(基于BERT的中文评价情感分析)
人工智能·深度学习·bert
果冻人工智能1 小时前
10个必须了解的技术,保护LLM模型在预训练、后训练和推理阶段免受攻击
人工智能
paterl1 小时前
CNN(卷积神经网络)
人工智能·神经网络·cnn
中杯可乐多加冰1 小时前
告别信息焦虑,用这个国产AI知识库工具做知识管理,大脑终于解放了
人工智能·掘金·金石计划
小小小菜狗-1 小时前
24统计建模国奖论文写作框架2(机器学习+自然语言处理类)(附原文《高校负面舆情成因与演化路径研究》)
人工智能·机器学习·自然语言处理