OpenCV之VideoCapture

VideoCaptrue类对视频进行读取操作以及调用摄像头。

头文件:

#include <opencv2/video.hpp>

主要函数如下:

构造函数

C++: VideoCapture::VideoCapture();
C++: VideoCapture::VideoCapture(const string& filename);
C++: VideoCapture::VideoCapture(int device);

参数:

filename -- 打开的视频文件名。

device -- 打开的视频捕获设备id ,如果只有一个摄像头可以填0,表示打开默认的摄像头。

基本功能

打开视频文件或者设备

C++: bool VideoCapture::open(const string& filename);
C++: bool VideoCapture::open(int device);

打开一个视频文件或者打开一个捕获视频的设备(也就是摄像头)

参数:

filename -- 打开的视频文件名。

device -- 打开的视频捕获设备id ,如果只有一个摄像头可以填0,表示打开默认的摄像头。

判断打开是否成功

C++: bool VideoCapture::isOpened();

成功返回true,,否则false.

关闭视频文件或者摄像头

C++: void VideoCapture::release();

抓取下一帧

C++: bool VideoCapture::grab();//需与retrieve结合使用
C++: bool VideoCapture::retrieve(Mat& image, int channel=0);
C++: VideoCapture& VideoCapture::operator>>(Mat& image);
C++: bool VideoCapture::read(Mat& image);

获取视频属性

C++: double VideoCapture::get(int propId);

如果属性不支持,将会返回0。

参数:属性的ID。

属性的ID可以是下面的之一:

CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds or video capture timestamp.
CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
CV_CAP_PROP_FPS Frame rate.
CV_CAP_PROP_FOURCC 4-character code of codec.
CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
CV_CAP_PROP_HUE Hue of the image (only for cameras).
CV_CAP_PROP_GAIN Gain of the image (only for cameras).
CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
CV_CAP_PROP_WHITE_BALANCE Currently not supported
CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)

设置属性

bool VideoCapture::set(int propertyId, double value)

成功返回true,否则返回false

参数:第一个是属性ID,第二个是该属性要设置的值。

属性ID如下:

CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
CV_CAP_PROP_FPS Frame rate.
CV_CAP_PROP_FOURCC 4-character code of codec.
CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
CV_CAP_PROP_HUE Hue of the image (only for cameras).
CV_CAP_PROP_GAIN Gain of the image (only for cameras).
CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
CV_CAP_PROP_WHITE_BALANCE Currently unsupported
CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)

实例:获取任意一帧

1 实例及初始化:

cv::VideoCapture capture.open("Old Film Effect.mp4");

2 设置需要读取帧的位置:

capture.set(cv::CAP_PROP_POS_FRAMES,10);//设置读取第10帧

3 读取帧

Mat frame;
if (capture.read(frame))
   imwrite("d:/a.bmp",frame);
相关推荐
cqbzcsq2 分钟前
ESMC-600M蛋白质语言模型本地部署攻略
人工智能·语言模型·自然语言处理
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
SpikeKing1 小时前
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
人工智能·llm·预训练·scalinglaws·100b·deepnorm·egs
小枫@码1 小时前
免费GPU算力,不花钱部署DeepSeek-R1
人工智能·语言模型
liruiqiang051 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_2 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉
微学AI2 小时前
GPU算力平台|在GPU算力平台部署可图大模型Kolors的应用实战教程
人工智能·大模型·llm·gpu算力
西猫雷婶2 小时前
python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算
人工智能·opencv·计算机视觉
IT古董2 小时前
【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
人工智能·深度学习·生成对抗网络
Jackilina_Stone2 小时前
【论文阅读笔记】“万字”关于深度学习的图像和视频阴影检测、去除和生成的综述笔记 | 2024.9.3
论文阅读·人工智能·笔记·深度学习·ai