机器学习第十三课--主成分分析PCA

一.高维数据

除了图片、文本数据,我们在实际工作中也会面临更多高维的数据。比如在评分卡模型构建过程中,我们通常会试着衍生出很多的特征,最后就得到上千维、甚至上完维特征;在广告点击率预测应用中,拥有几个亿特征也是常见的事情;在脑科学或者基因研究中,特征数甚至可能更多;所以,如何更有效地处理这些高维的特征就变成了一个非常重要的问题。

二.数据降维

除了有效利用高维的数据之外,我们也可以思考一个问题:"高维数据,那么多特征真的都有用吗?" 这就类似于一个人的社交质量并不取决于有多少朋友,而在于朋友质量,在建模过程中也适用这个道理。特征越多并不代表学出来的模型越好,我们更需要关注特征对预测任务的相关性或者价值,有些特征甚至可能成为噪声,反而影响模型的效果。

2.1如何降维

2.1.1数据的降维 通过函数的映射关系

2.1.2特征选择

选择子集

三.PCA

PCA(Principal Component Analysis)作为一种重要的降维算法有着非常广泛的应用。PCA经常用来做数据的可视化、或者用来提高预测模型的效果。 对于PCA降维算法来讲,有几个核心问题需要弄清楚:

1。 PCA降维的核心思想是什么? 它是依赖于什么条件做降维?

2。 什么叫主成分(principal component)?

从图中可以看出,沿着C的方向,数据是越分散的,也就说明在这个方向上我们可以看出数据之间的更多差异!相反,沿着直线A的方向,我们可以看到很多数据的差异并不明显,区分度很低。所以,总体来讲,当我们选择C为新的坐标轴时,所有点在这个坐标轴上的值的差异是最大的,也就是最大程度的保留了数据之间的特点(差异性),这就是PCA的核心思想。

找到第一个主成分,第二个主成分和第一个主成分垂直。

四.PCA的缺点

1.只能针对线性

2.必须做归一化

3.部分信息会丢失(降维)

4.可解释性比较弱

五.其他的降维方法

相关推荐
式5163 分钟前
大模型学习基础(九)LoRA微调原理
人工智能·深度学习·学习
CCPC不拿奖不改名5 分钟前
python基础面试编程题汇总+个人练习(入门+结构+函数+面向对象编程)--需要自取
开发语言·人工智能·python·学习·自然语言处理·面试·职场和发展
菜鸟‍5 分钟前
【论文学习】一种用于医学图像分割单源域泛化的混合双增强约束框架 || 视觉 Transformer 在通用图像分割中的 “缺失环节”
人工智能·深度学习·计算机视觉
五度易链-区域产业数字化管理平台7 分钟前
数观丨2026年半导体集成电路产业融资分析
大数据·人工智能
应用市场7 分钟前
机器学习中的正向反馈循环:从原理到实战应用
人工智能·深度学习·机器学习
Allen正心正念202530 分钟前
GGUF/GPTQ/AWQ模型对比
人工智能
Coder_Boy_31 分钟前
基于SpringAI的在线考试系统-知识点管理模块完整优化方案
java·前端·人工智能·spring boot
Godspeed Zhao32 分钟前
从零开始学AI3——背景知识2
人工智能
康康的AI博客35 分钟前
多模态大一统:从GPT-4突破到AI领域质的飞跃之路
人工智能·ai
咚咚王者38 分钟前
人工智能之核心基础 机器学习 第十九章 强化学习入门
人工智能·机器学习