机器学习第十三课--主成分分析PCA

一.高维数据

除了图片、文本数据,我们在实际工作中也会面临更多高维的数据。比如在评分卡模型构建过程中,我们通常会试着衍生出很多的特征,最后就得到上千维、甚至上完维特征;在广告点击率预测应用中,拥有几个亿特征也是常见的事情;在脑科学或者基因研究中,特征数甚至可能更多;所以,如何更有效地处理这些高维的特征就变成了一个非常重要的问题。

二.数据降维

除了有效利用高维的数据之外,我们也可以思考一个问题:"高维数据,那么多特征真的都有用吗?" 这就类似于一个人的社交质量并不取决于有多少朋友,而在于朋友质量,在建模过程中也适用这个道理。特征越多并不代表学出来的模型越好,我们更需要关注特征对预测任务的相关性或者价值,有些特征甚至可能成为噪声,反而影响模型的效果。

2.1如何降维

2.1.1数据的降维 通过函数的映射关系

2.1.2特征选择

选择子集

三.PCA

PCA(Principal Component Analysis)作为一种重要的降维算法有着非常广泛的应用。PCA经常用来做数据的可视化、或者用来提高预测模型的效果。 对于PCA降维算法来讲,有几个核心问题需要弄清楚:

1。 PCA降维的核心思想是什么? 它是依赖于什么条件做降维?

2。 什么叫主成分(principal component)?

从图中可以看出,沿着C的方向,数据是越分散的,也就说明在这个方向上我们可以看出数据之间的更多差异!相反,沿着直线A的方向,我们可以看到很多数据的差异并不明显,区分度很低。所以,总体来讲,当我们选择C为新的坐标轴时,所有点在这个坐标轴上的值的差异是最大的,也就是最大程度的保留了数据之间的特点(差异性),这就是PCA的核心思想。

找到第一个主成分,第二个主成分和第一个主成分垂直。

四.PCA的缺点

1.只能针对线性

2.必须做归一化

3.部分信息会丢失(降维)

4.可解释性比较弱

五.其他的降维方法

相关推荐
赵钰老师7 分钟前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
AIGC-Lison7 分钟前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·ai·stable diffusion·aigc·sd
AI绘画咪酱8 分钟前
Stable Diffusion|Ai赋能电商 Inpaint Anything
人工智能·ai·ai作画·stable diffusion·sd·ai教程·sd教程
ruokkk9 分钟前
Spring AI MCP 客户端实战:轻松连接高德地图等工具
人工智能
_一条咸鱼_10 分钟前
AI Agent 工作原理深入剖析
人工智能
飞哥数智坊12 分钟前
AI编程实战:数据大屏生成初探
人工智能
蚝油菜花13 分钟前
Cua:Mac用户狂喜!这个开源框架让AI直接接管你的电脑,快速实现AI自动化办公
人工智能·开源
蚝油菜花14 分钟前
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
人工智能·开源
nuise_15 分钟前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
声网29 分钟前
MiniMax 发布新 TTS 模型 Speech-02,轻松制作长篇有声内容;Meta 高端眼镜年底推出:售价上千美元丨日报
人工智能