机器学习第十三课--主成分分析PCA

一.高维数据

除了图片、文本数据,我们在实际工作中也会面临更多高维的数据。比如在评分卡模型构建过程中,我们通常会试着衍生出很多的特征,最后就得到上千维、甚至上完维特征;在广告点击率预测应用中,拥有几个亿特征也是常见的事情;在脑科学或者基因研究中,特征数甚至可能更多;所以,如何更有效地处理这些高维的特征就变成了一个非常重要的问题。

二.数据降维

除了有效利用高维的数据之外,我们也可以思考一个问题:"高维数据,那么多特征真的都有用吗?" 这就类似于一个人的社交质量并不取决于有多少朋友,而在于朋友质量,在建模过程中也适用这个道理。特征越多并不代表学出来的模型越好,我们更需要关注特征对预测任务的相关性或者价值,有些特征甚至可能成为噪声,反而影响模型的效果。

2.1如何降维

2.1.1数据的降维 通过函数的映射关系

2.1.2特征选择

选择子集

三.PCA

PCA(Principal Component Analysis)作为一种重要的降维算法有着非常广泛的应用。PCA经常用来做数据的可视化、或者用来提高预测模型的效果。 对于PCA降维算法来讲,有几个核心问题需要弄清楚:

1。 PCA降维的核心思想是什么? 它是依赖于什么条件做降维?

2。 什么叫主成分(principal component)?

从图中可以看出,沿着C的方向,数据是越分散的,也就说明在这个方向上我们可以看出数据之间的更多差异!相反,沿着直线A的方向,我们可以看到很多数据的差异并不明显,区分度很低。所以,总体来讲,当我们选择C为新的坐标轴时,所有点在这个坐标轴上的值的差异是最大的,也就是最大程度的保留了数据之间的特点(差异性),这就是PCA的核心思想。

找到第一个主成分,第二个主成分和第一个主成分垂直。

四.PCA的缺点

1.只能针对线性

2.必须做归一化

3.部分信息会丢失(降维)

4.可解释性比较弱

五.其他的降维方法

相关推荐
想要成为计算机高手6 分钟前
VLA中人类数据迁移到机器人后的涌现 -- physical intelligence -- 2025.12.16
人工智能·机器人·具身智能·vla
路人与大师10 分钟前
大规模多变量AutoML调参实验报告
人工智能·深度学习·机器学习
MoonBit月兔11 分钟前
生态影响力持续提升,MoonBit 登 2025 中国技术品牌影响力榜单
大数据·人工智能·ai编程·moonbit
2501_9452921714 分钟前
AI证书的十字路口:政策变动后,国际通行证正在贬值吗?
人工智能
夏日白云27 分钟前
《PDF解析工程实录》第 12 章|别让模型贴着墙走:为什么加一圈空白,效果反而更好?
图像处理·机器学习·pdf·llm·大语言模型·rag·文档解析
城市直通车1 小时前
聚焦产业落地与生态共建小拼AI携手火山引擎共推AIGC电商智能化升级
人工智能·aigc·火山引擎
傻啦嘿哟1 小时前
深度学习破解复杂验证码:CNN实战指南
人工智能·深度学习·cnn
生信碱移1 小时前
单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!
算法·机器学习·数据挖掘·数据分析·聚类
WHS-_-20221 小时前
Monostatic Sensing With OFDM Under Phase Noise: From Mitigation to Exploitation
5g·机器学习
人工智能培训1 小时前
深度学习—卷积神经网络(4)
人工智能·深度学习·神经网络·机器学习·cnn·dnn