在项目resources目录下新建com.jianmu.config.sharding.DateShardingAlgorithm 文件
新增yaml配置 数据源
yaml
spring:
shardingsphere:
props:
sql:
#是否在日志中打印 SQL
show: true
#打印简单风格的 SQL
simple: true
datasource:
names: pingxuanlog
pingxuanlog:
type: com.alibaba.druid.pool.DruidDataSource
driver-class-name: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/db_jianmu_pingxuan_log?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password: root
#最大连接池数量
max-active: 10
#最小连接池数量
min-idle: 5
#初始化时建立物理连接的个数
initial-size: 5
#获取连接时最大等待时间,单位毫秒
max-wait: 3000
#配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
time-between-eviction-runs-millis: 60000
#配置一个连接在池中最小生存的时间,单位是毫秒
min-evictable-idle-time-millis: 100000
#用来检测连接是否有效的sql,要求是一个查询语句
validation-query: SELECT 1 FROM DUAL
#建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。
test-while-idle: true
新增yaml配置 sharding 分表规则
yaml
spring:
shardingsphere:
sharding:
tables:
t_act_vt_log:
#配置数据节点,这里是按月分表,时间范围设置在202201 ~ 210012
actual-data-nodes: pingxuanlog.t_act_vt_log_$->{202201..203012}
table-strategy:
standard:
#使用标准分片策略,配置分片字段
sharding-column: add_time
# 精确匹配规则(自定义类)
precise-algorithm-class-name: com.jianmu.config.sharding.DateShardingAlgorithm
# 范围匹配规则(自定义类)
range-algorithm-class-name: com.jianmu.config.sharding.DateShardingAlgorithm
t_act_access_log:
#配置数据节点,这里是按月分表,时间范围设置在202201 ~ 210012
actual-data-nodes: pingxuanlog.t_act_access_log_$->{202201..203012}
table-strategy:
standard:
#使用标准分片策略,配置分片字段
sharding-column: add_time
# 精确匹配规则(自定义类)
precise-algorithm-class-name: com.jianmu.config.sharding.DateShardingAlgorithm
# 范围匹配规则(自定义类)
range-algorithm-class-name: com.jianmu.config.sharding.DateShardingAlgorithm
DataSourceConfiguration
java
package com.jianmu.config.sharding;
import com.baomidou.dynamic.datasource.DynamicRoutingDataSource;
import com.baomidou.dynamic.datasource.provider.AbstractDataSourceProvider;
import com.baomidou.dynamic.datasource.provider.DynamicDataSourceProvider;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DataSourceProperty;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DynamicDataSourceAutoConfiguration;
import com.baomidou.dynamic.datasource.spring.boot.autoconfigure.DynamicDataSourceProperties;
import org.apache.shardingsphere.shardingjdbc.jdbc.core.datasource.ShardingDataSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringBootConfiguration;
import org.springframework.boot.autoconfigure.AutoConfigureBefore;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.annotation.Primary;
import javax.sql.DataSource;
import java.util.Map;
/**
* 动态数据源配置:
* <p>
* 使用{@link com.baomidou.dynamic.datasource.annotation.DS}注解,切换数据源
*
* <code>@DS(DataSourceConfiguration.SHARDING_DATA_SOURCE_NAME)</code>
*
*/
@Configuration
@AutoConfigureBefore({DynamicDataSourceAutoConfiguration.class, SpringBootConfiguration.class})
public class DataSourceConfiguration {
/**
* 分表数据源名称
*/
public static final String SHARDING_DATA_SOURCE_NAME = "sharding";
/**
* 动态数据源配置项
*/
private final DynamicDataSourceProperties dynamicDataSourceProperties;
private final ShardingDataSource shardingDataSource;
@Autowired
public DataSourceConfiguration(DynamicDataSourceProperties dynamicDataSourceProperties, @Lazy ShardingDataSource shardingDataSource) {
this.dynamicDataSourceProperties = dynamicDataSourceProperties;
this.shardingDataSource = shardingDataSource;
}
/**
* 将shardingDataSource放到了多数据源(dataSourceMap)中
*
*/
@Bean
public DynamicDataSourceProvider dynamicDataSourceProvider() {
Map<String, DataSourceProperty> datasourceMap = dynamicDataSourceProperties.getDatasource();
return new AbstractDataSourceProvider() {
@Override
public Map<String, DataSource> loadDataSources() {
Map<String, DataSource> dataSourceMap = createDataSourceMap(datasourceMap);
// 将 sharding jdbc 管理的数据源也交给动态数据源管理
dataSourceMap.put(SHARDING_DATA_SOURCE_NAME, shardingDataSource);
return dataSourceMap;
}
};
}
/**
* 将动态数据源设置为首选的
* 当spring存在多个数据源时, 自动注入的是首选的对象
* 设置为主要的数据源之后,就可以支持sharding jdbc原生的配置方式
*/
@Primary
@Bean
public DataSource dataSource(DynamicDataSourceProvider dynamicDataSourceProvider) {
DynamicRoutingDataSource dataSource = new DynamicRoutingDataSource();
dataSource.setPrimary(dynamicDataSourceProperties.getPrimary());
dataSource.setStrict(dynamicDataSourceProperties.getStrict());
dataSource.setStrategy(dynamicDataSourceProperties.getStrategy());
dataSource.setProvider(dynamicDataSourceProvider);
dataSource.setP6spy(dynamicDataSourceProperties.getP6spy());
dataSource.setSeata(dynamicDataSourceProperties.getSeata());
return dataSource;
}
}
java
package com.jianmu.config.sharding;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.actuate.autoconfigure.jdbc.DataSourceHealthContributorAutoConfiguration;
import org.springframework.boot.actuate.health.AbstractHealthIndicator;
import org.springframework.boot.actuate.jdbc.DataSourceHealthIndicator;
import org.springframework.boot.jdbc.metadata.DataSourcePoolMetadataProvider;
import org.springframework.context.annotation.Configuration;
import org.springframework.util.StringUtils;
import javax.sql.DataSource;
import java.util.Map;
/**
* @author kong
*/
@Configuration
public class DataSourceHealthConfig extends DataSourceHealthContributorAutoConfiguration {
@Value("${spring.datasource.dbcp2.validation-query:select 1}")
private String defaultQuery;
public DataSourceHealthConfig(Map<String, DataSource> dataSources, ObjectProvider<DataSourcePoolMetadataProvider> metadataProviders) {
super(dataSources, metadataProviders);
}
@Override
protected AbstractHealthIndicator createIndicator(DataSource source) {
DataSourceHealthIndicator indicator = (DataSourceHealthIndicator) super.createIndicator(source);
if (!StringUtils.hasText(indicator.getQuery())) {
indicator.setQuery(defaultQuery);
}
return indicator;
}
}
java
package com.jianmu.config.sharding;
import com.alibaba.fastjson2.JSON;
import com.google.common.collect.Lists;
import com.google.common.collect.Range;
import com.jianmu.tools.ApplicationContextTools;
import lombok.SneakyThrows;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.PreciseShardingValue;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.standard.RangeShardingValue;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.Collection;
import java.util.List;
import java.util.stream.Collectors;
/**
sharding 分库分表策略配置:按照年月 如t_act_vt_log_202208
**/
@Slf4j
public class DateShardingAlgorithm implements PreciseShardingAlgorithm<LocalDateTime>, RangeShardingAlgorithm<LocalDateTime> {
private final DateTimeFormatter format = DateTimeFormatter.ofPattern("yyyyMM");
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<LocalDateTime> psv) {
final String table = psv.getLogicTableName();
final String prefix = table + "_";
if (log.isDebugEnabled()) {
log.debug("分表更新");
}
TableService tableService = (TableService) ApplicationContextTools.getBean(TableService.class);
//添加日期
final String logicTable = prefix + psv.getValue().format(this.format);
boolean exist = tableService.exist(logicTable);
if (log.isDebugEnabled()) {
log.debug("更新: {} 存在:{}", logicTable, exist);
}
//匹配到了
if (exist) {
return logicTable;
}
//未匹配到
if (log.isDebugEnabled()) {
log.debug("sharding 未匹配到表,需要创建");
}
//创建这张表
tableService.copy(logicTable, table);
return logicTable;
}
/**
* 范围匹配
*/
@SneakyThrows
@Override
public Collection<String> doSharding(Collection<String> collection, RangeShardingValue<LocalDateTime> rsv) {
final String table = rsv.getLogicTableName();
final String prefix = table + "_";
if (log.isDebugEnabled()) {
log.debug("分表查询 表:{}", table);
}
TableService tableService = (TableService) ApplicationContextTools.getBean(TableService.class);
List<String> tables = tableService.tables();
Range<LocalDateTime> range = rsv.getValueRange();
//计算出时间范围内的所有日期
final int upper = range.hasUpperBound() ? Integer.parseInt(range.upperEndpoint().toLocalDate().format(this.format)) : 0;
final int lower = range.hasLowerBound() ? Integer.parseInt(range.lowerEndpoint().toLocalDate().format(this.format)) : 0;
List<String> validTables = this.validTables(prefix, tables, upper, lower);
if (log.isDebugEnabled()) {
log.debug("查询表:{}", JSON.toJSONString(validTables));
}
if (CollectionUtils.isEmpty(validTables)) {
if (log.isDebugEnabled()) {
log.debug("查询表不存在 改查原始表");
}
return Lists.newArrayList(table);
}
return validTables;
}
private List<String> validTables(String prefix, List<String> tables, int upper, int lower) {
if (log.isDebugEnabled()) {
log.debug("上界:{},下界:{}", upper, lower);
}
return tables.parallelStream().filter(i -> {
if (i.contains(prefix)) {
final String date = i.replace(prefix, "");
if (date.matches("[0-9]*")) {
final int mouth = Integer.parseInt(date);
if (upper > 0 && lower > 0) {
return mouth <= upper && mouth >= lower;
} else {
if (upper > 0) {
return mouth <= upper;
}
if (lower > 0) {
return mouth >= lower;
}
}
}
}
return false;
}).collect(Collectors.toList());
}
}
java
package com.jianmu.config.sharding;
public class ShardingConstant {
public static final String ORIGINAL_DATABASE = "db_jianmu_pingxuan_log";
}
java
package com.jianmu.config.sharding;
import java.sql.SQLException;
import java.util.List;
import java.util.concurrent.ExecutionException;
public interface TableService {
/**
* 返回所有表
*/
List<String> tables() throws ExecutionException, SQLException;
boolean exist(String table);
/**
* 精确删除表
*/
boolean drop(String table);
/**
* 旧表复制为新表
*/
boolean copy(String newTable, String usedTable);
}
java
package com.jianmu.config.sharding;
import com.baomidou.dynamic.datasource.DynamicRoutingDataSource;
import com.baomidou.dynamic.datasource.annotation.DS;
import com.jianmu.constant.SysRedisConstant;
import com.jianmu.mapper.system.TableMapper;
import com.jianmu.tools.JdbcTools;
import com.jianmu.tools.log.LogTools;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Service;
import java.sql.SQLException;
import java.util.List;
@Slf4j
@Service
@DS("sharding")
public class TableServiceImpl implements TableService {
private final TableMapper tableMapper;
private final RedisTemplate<String, Object> redis;
private final ValueOperations<String, Object> redisValue;
private final DynamicRoutingDataSource dynamicRoutingDataSource;
@Autowired
public TableServiceImpl(TableMapper tableMapper, RedisTemplate<String, Object> redis, DynamicRoutingDataSource dynamicRoutingDataSource) {
this.tableMapper = tableMapper;
this.redis = redis;
this.redisValue = redis.opsForValue();
this.dynamicRoutingDataSource = dynamicRoutingDataSource;
}
@Override
public List<String> tables() throws SQLException {
List<String> tables = (List<String>) this.redisValue.get(SysRedisConstant.TABLES);
if (tables == null) {
List<String> list = JdbcTools.tables(this.dynamicRoutingDataSource.getDataSource(DataSourceConfiguration.SHARDING_DATA_SOURCE_NAME).getConnection(), ShardingConstant.ORIGINAL_DATABASE);
//每24小时更新一次
this.redisValue.set(SysRedisConstant.TABLES, list, 86400);
return list;
}
return tables;
}
@Override
public boolean exist(String table) {
try {
Integer exist = this.tableMapper.exist(table);
if (log.isDebugEnabled()) {
log.debug("表:{} 存在:{}", table, exist);
}
return true;
} catch (Exception e) {
LogTools.err(e);
return false;
}
}
@Override
public boolean drop(String table) {
boolean flag = this.tableMapper.drop(table) >= 0;
if (flag) {
this.delCache();
}
return flag;
}
@Override
public boolean copy(String newTable, String usedTable) {
boolean flag = this.tableMapper.copy(newTable, usedTable) >= 0;
if (flag) {
this.delCache();
}
return flag;
}
private void delCache() {
this.redis.delete(SysRedisConstant.TABLES);
}
}