CFGPT: Chinese Financial Assistant with Large Language Model

本文是LLM系列文章,针对《CFGPT: Chinese Financial Assistant with Large Language Model》的翻译。

CFGPT:大型语言模型的中文财务助理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 数据集](#3 数据集)
  • [4 模型和训练](#4 模型和训练)
  • [5 应用](#5 应用)
  • [6 结论](#6 结论)

摘要

大型语言模型(LLM)在金融领域的自然语言处理任务中显示出巨大的潜力。在这项工作中,我们提出了一个名为CFGPT的中国金融生成预训练Transformer框架,其中包括一个用于预训练和监督微调的数据集(CFData)、一个用于熟练管理金融文本的金融LLM(CFLLM),以及一个用于导航现实世界金融应用程序的部署框架(CFAPP)。CFData包括预训练数据集和监督微调数据集,其中预训练数据集中整理了中国的金融数据和分析,以及一个较小的通用文本子集,共有584M个文档和141B个token,监督微调数据集中针对六个不同的金融任务量身定制,通过总共1.5M个指令对和1.5B个token,体现了财务分析和决策的各个方面。CFLLM基于InternetLM-7B来平衡模型能力和大小,分两个阶段在CFData上进行训练,即持续的预训练和监督的微调。CFAPP以大型语言模型(LLM)为中心,并添加了额外的模块,以确保在现实应用中具有多方面的功能。我们的代码发布于https://github.com/TongjiFinLab/CFGPT

1 引言

2 相关工作

3 数据集

4 模型和训练

5 应用

6 结论

在这项研究中,我们介绍了一个具有大型语言模型的开源中国财务助理,名为CFGPT,用于金融领域的适用LLM要求。CFGPT包括一个满足现实世界应用的部署框架,一个在中国金融数据集上进行两阶段微调的开源LLM,以及一个评估中国金融领域模型性能的基准。通过初步评估,我们展示了我们的CFLLM-ins-7B模型在财务任务中的有效性,强调了在财务领域对大型语言模型进行特定领域的持续预训练和监督微调的潜力。尽管如此,诸如提高复杂任务的绩效和解决资源限制等挑战仍然存在。我们的开源贡献旨在促进金融大语言模型文献的进一步研究和创新,促进金融部门开发更有价值和适用性的LLM。

相关推荐
Mxsoft6199 分钟前
某次数据解析失败,发现IEC61850版本差异,手动校验报文结构救急!
人工智能
智元视界27 分钟前
农业AI化:如何让一台无人机懂得“看天种地”?
大数据·人工智能·prompt·无人机·数字化转型·产业升级
丝斯201138 分钟前
AI学习笔记整理(26)—— 计算机视觉之目标追踪‌
人工智能·笔记·学习
gallonyin38 分钟前
【AI智能体】打造高内聚的 MCP-Filesystem Server
人工智能·架构·智能体
Deepoch40 分钟前
Deepoc-M 破局:半导体研发告别试错内耗
大数据·人工智能·数学建模·半导体·具身模型·deepoc
Debroon1 小时前
Function Call 函数调用高阶方法:从零开始,深入理解 AI 函数调用的核心原理与实战技巧
人工智能
超龄超能程序猿1 小时前
提升文本转SQL(Text-to-SQL)精准度的实践指南
数据库·人工智能·sql
柒柒钏1 小时前
PyTorch学习总结(一)
人工智能·pytorch·学习
金融小师妹1 小时前
基于NLP政策信号解析的联邦基金利率预测:美银动态调整12月降息概率至88%,2026年双降路径的强化学习模拟
大数据·人工智能·深度学习·1024程序员节
_山止川行2 小时前
生活
人工智能