CFGPT: Chinese Financial Assistant with Large Language Model

本文是LLM系列文章,针对《CFGPT: Chinese Financial Assistant with Large Language Model》的翻译。

CFGPT:大型语言模型的中文财务助理

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 数据集](#3 数据集)
  • [4 模型和训练](#4 模型和训练)
  • [5 应用](#5 应用)
  • [6 结论](#6 结论)

摘要

大型语言模型(LLM)在金融领域的自然语言处理任务中显示出巨大的潜力。在这项工作中,我们提出了一个名为CFGPT的中国金融生成预训练Transformer框架,其中包括一个用于预训练和监督微调的数据集(CFData)、一个用于熟练管理金融文本的金融LLM(CFLLM),以及一个用于导航现实世界金融应用程序的部署框架(CFAPP)。CFData包括预训练数据集和监督微调数据集,其中预训练数据集中整理了中国的金融数据和分析,以及一个较小的通用文本子集,共有584M个文档和141B个token,监督微调数据集中针对六个不同的金融任务量身定制,通过总共1.5M个指令对和1.5B个token,体现了财务分析和决策的各个方面。CFLLM基于InternetLM-7B来平衡模型能力和大小,分两个阶段在CFData上进行训练,即持续的预训练和监督的微调。CFAPP以大型语言模型(LLM)为中心,并添加了额外的模块,以确保在现实应用中具有多方面的功能。我们的代码发布于https://github.com/TongjiFinLab/CFGPT

1 引言

2 相关工作

3 数据集

4 模型和训练

5 应用

6 结论

在这项研究中,我们介绍了一个具有大型语言模型的开源中国财务助理,名为CFGPT,用于金融领域的适用LLM要求。CFGPT包括一个满足现实世界应用的部署框架,一个在中国金融数据集上进行两阶段微调的开源LLM,以及一个评估中国金融领域模型性能的基准。通过初步评估,我们展示了我们的CFLLM-ins-7B模型在财务任务中的有效性,强调了在财务领域对大型语言模型进行特定领域的持续预训练和监督微调的潜力。尽管如此,诸如提高复杂任务的绩效和解决资源限制等挑战仍然存在。我们的开源贡献旨在促进金融大语言模型文献的进一步研究和创新,促进金融部门开发更有价值和适用性的LLM。

相关推荐
点云SLAM2 分钟前
PyTorch中flatten()函数详解以及与view()和 reshape()的对比和实战代码示例
人工智能·pytorch·python·计算机视觉·3d深度学习·张量flatten操作·张量数据结构
智海观潮3 分钟前
Unity Catalog与Apache Iceberg如何重塑Data+AI时代的企业数据架构
大数据·人工智能·ai·iceberg·catalog
爱分享的飘哥9 分钟前
第三篇:VAE架构详解与PyTorch实现:从零构建AI的“视觉压缩引擎”
人工智能·pytorch·python·aigc·教程·生成模型·代码实战
之墨_22 分钟前
【大语言模型入门】—— Transformer 如何工作:Transformer 架构的详细探索
语言模型·架构·transformer
柏峰电子1 小时前
市政道路积水监测系统:守护城市雨天出行安全的 “智慧防线”
大数据·人工智能·安全
蓑雨春归1 小时前
自主智能Agent如何重塑工作流自动化:技术、经济与未来展望
人工智能·chatgpt·自动化
哈密瓜Q1 小时前
计算机视觉-图像基础处理
人工智能·计算机视觉
虹科数字化与AR2 小时前
安宝特案例丨户外通信机房施工革新:AR+作业流技术破解行业难题
人工智能·ar·工业ar·机房建设·户外通讯机房·户外作业·工程建造
TaoSense3 小时前
AI应用:电路板设计
人工智能
karlso3 小时前
深度学习:简介与任务分类总览
人工智能·深度学习·分类