一百八十一、Hive——海豚调度HiveSQL任务时当Hive的计算引擎是mr或spark时脚本的区别(踩坑,附截图)

一、目的

当Hive的计算引擎是spark或mr时,发现海豚调度HQL任务的脚本并不同,mr更简洁

二、Hive的计算引擎是Spark时

(一)海豚调度脚本

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;
set hive.auto.convert.join=false;
set mapreduce.map.memory.mb=10150;
set mapreduce.map.java.opts=-Xmx6144m;
set mapreduce.reduce.memory.mb=10150;
set mapreduce.reduce.java.opts=-Xmx8120m;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;
set hive.exec.parallel=true;
set hive.support.concurrency=false;
set mapreduce.map.memory.mb=4128;
set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dwd_evaluation partition(day='$yesdate')

select device_no,

cycle,

lane_num,

create_time,

lane_no,

volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_ods.ods_evaluation

where volume is not null and date(create_time)= '$yesdate'

group by device_no, cycle, lane_num, create_time, lane_no,

volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(二)任务流执行结果

调度执行成功,时间需要1m29s

三、Hive的计算引擎是MR时

(一)海豚调度脚本

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dwd_evaluation partition(day='$yesdate')

select device_no,

cycle,

lane_num,

create_time,

lane_no,

volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_ods.ods_evaluation

where volume is not null and date(create_time)= '$yesdate'

group by device_no, cycle, lane_num, create_time, lane_no,

volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(二)任务流执行结果

调度执行成功,时间需要1m3s

四、脚本区别

计算引擎为spark时,脚本比计算引擎为mr多,而且spark运行速度比mr慢

set hive.vectorized.execution.enabled=false;
set hive.auto.convert.join=false;
set mapreduce.map.memory.mb=10150;
set mapreduce.map.java.opts=-Xmx6144m;
set mapreduce.reduce.memory.mb=10150;
set mapreduce.reduce.java.opts=-Xmx8120m;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;
set hive.exec.parallel=true;
set hive.support.concurrency=false;
set mapreduce.map.memory.mb=4128;
set hive.vectorized.execution.enabled=false;

mr为计算引擎时任务流脚本不能添加上面这些优化语句,不然会报错

在海豚调度HiveSQL任务流,推荐使用mr作为Hive的计算引擎。

不仅不需要安装spark,而且脚本简洁、任务执行速度快!

相关推荐
大叔_爱编程29 分钟前
基于大数据的短视频用户兴趣分析-hive+django+spider
大数据·hive·django·毕业设计·源码·课程设计·spider
云闲不收4 小时前
hive和hadoop如何部署
数据仓库·hive·hadoop
Light605 小时前
Spark OA 系统深度分析与改造报告(整合版 + 领码 SPARK 改造计划 + 功能缺口)
大数据·分布式·spark
Jonathan Star15 小时前
master 分支必须做严格的分支保护,禁止直接 push,所有变更必须通过 PR/MR + 审核后合并
mr
都是蠢货1 天前
Servlet的生命周期
hive·hadoop·servlet
B站计算机毕业设计之家1 天前
大数据:基于python唯品会商品数据可视化分析系统 Flask框架 requests爬虫 Echarts可视化 数据清洗 大数据技术(源码+文档)✅
大数据·爬虫·python·信息可视化·spark·flask·唯品会
沧海寄馀生1 天前
Apache Hadoop生态组件部署分享-Spark
大数据·hadoop·分布式·spark·apache
yumgpkpm1 天前
接入Impala、Hive 的AI平台、开源大模型的国内厂商(星环、Doris、智谱AI、Qwen、DeepSeek、 腾讯混元、百川智能)
人工智能·hive·hadoop·zookeeper·spark·开源·hbase
大江东去浪淘尽千古风流人物2 天前
【DSP】向量化操作的误差来源分析及其经典解决方案
linux·运维·人工智能·算法·vr·dsp开发·mr
鹿衔`2 天前
CDH 6.3.2 集群外挂部署 Spark 3.5.7 连接 Paimon 1.1.1 (二)
大数据·分布式·spark