一百八十一、Hive——海豚调度HiveSQL任务时当Hive的计算引擎是mr或spark时脚本的区别(踩坑,附截图)

一、目的

当Hive的计算引擎是spark或mr时,发现海豚调度HQL任务的脚本并不同,mr更简洁

二、Hive的计算引擎是Spark时

(一)海豚调度脚本

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.vectorized.execution.enabled=false;
set hive.auto.convert.join=false;
set mapreduce.map.memory.mb=10150;
set mapreduce.map.java.opts=-Xmx6144m;
set mapreduce.reduce.memory.mb=10150;
set mapreduce.reduce.java.opts=-Xmx8120m;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;
set hive.exec.parallel=true;
set hive.support.concurrency=false;
set mapreduce.map.memory.mb=4128;
set hive.vectorized.execution.enabled=false;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dwd_evaluation partition(day='$yesdate')

select device_no,

cycle,

lane_num,

create_time,

lane_no,

volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_ods.ods_evaluation

where volume is not null and date(create_time)= '$yesdate'

group by device_no, cycle, lane_num, create_time, lane_no,

volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(二)任务流执行结果

调度执行成功,时间需要1m29s

三、Hive的计算引擎是MR时

(一)海豚调度脚本

#! /bin/bash

source /etc/profile

nowdate=`date --date='0 days ago' "+%Y%m%d"`

yesdate=`date -d yesterday +%Y-%m-%d`

hive -e "

use hurys_dc_dwd;

set hive.exec.dynamic.partition=true;

set hive.exec.dynamic.partition.mode=nonstrict;

set hive.exec.max.dynamic.partitions.pernode=1000;

set hive.exec.max.dynamic.partitions=1500;

insert overwrite table dwd_evaluation partition(day='$yesdate')

select device_no,

cycle,

lane_num,

create_time,

lane_no,

volume,

queue_len_max,

sample_num,

stop_avg,

delay_avg,

stop_rate,

travel_dist,

travel_time_avg

from hurys_dc_ods.ods_evaluation

where volume is not null and date(create_time)= '$yesdate'

group by device_no, cycle, lane_num, create_time, lane_no,

volume, queue_len_max, sample_num, stop_avg, delay_avg, stop_rate, travel_dist, travel_time_avg

"

(二)任务流执行结果

调度执行成功,时间需要1m3s

四、脚本区别

计算引擎为spark时,脚本比计算引擎为mr多,而且spark运行速度比mr慢

set hive.vectorized.execution.enabled=false;
set hive.auto.convert.join=false;
set mapreduce.map.memory.mb=10150;
set mapreduce.map.java.opts=-Xmx6144m;
set mapreduce.reduce.memory.mb=10150;
set mapreduce.reduce.java.opts=-Xmx8120m;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partition=true;
set hive.exec.parallel=true;
set hive.support.concurrency=false;
set mapreduce.map.memory.mb=4128;
set hive.vectorized.execution.enabled=false;

mr为计算引擎时任务流脚本不能添加上面这些优化语句,不然会报错

在海豚调度HiveSQL任务流,推荐使用mr作为Hive的计算引擎。

不仅不需要安装spark,而且脚本简洁、任务执行速度快!

相关推荐
巧克力味的桃子4 小时前
Spark 课程核心知识点复习汇总
大数据·分布式·spark
Justice Young6 小时前
Hive第四章:HIVE Operators and Functions
大数据·数据仓库·hive·hadoop
LF3_7 小时前
hive,Relative path in absolute URI: ${system:user.name%7D 解决
数据仓库·hive·hadoop
Light607 小时前
智能重构人货场:领码SPARK破解快消行业增长困局的全景解决方案
spark·数字化转型·ai大模型·智能营销·快消行业·供应链优化
德彪稳坐倒骑驴9 小时前
Hive SQL常遗忘的命令
hive·hadoop·sql
Justice Young9 小时前
Hive第六章:Hive Optimization and Miscellaneous
数据仓库·hive·hadoop
Justice Young10 小时前
Hive第五章:Integeration with HBase
大数据·数据仓库·hive·hbase
Justice Young10 小时前
Hive第三章:HQL的使用
大数据·数据仓库·hive·hadoop
叫我:松哥13 小时前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
yumgpkpm1 天前
AI评判:信创替代对Cloudera CDH CDP Hadoop大数据平台有何影响?
大数据·hive·oracle·flink·kafka·hbase·cloudera