多输入多输出 | MATLAB实现LSSVM最小二乘支持向量机多输入多输出

多输入多输出 | MATLAB实现LSSVM最小二乘支持向量机多输入多输出

目录

预测效果




基本介绍

MATLAB实现LSSVM最小二乘支持向量机多输入多输出

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式:私信博主回复MATLAB实现LSSVM最小二乘支持向量机多输入多输出
clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   50;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  1.0;        % 最大边界
popmin  = -1.0;        % 最小边界
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
for i = 1 : sizepop
    pop(i, :) = rands(1, numsum);  % 初始化种群
    V(i, :) = rands(1, numsum);    % 初始化速度
    fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
      
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

 

    end

    BestFit = [BestFit, fitnesszbest];    
end

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961

[2] https://blog.csdn.net/kjm13182345320/article/details/127931217

[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
机器学习之心3 个月前
多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测
支持向量机·matlab·贝叶斯优化·多变量时间序列预测·最小二乘支持向量机·bo-lssvm
机器学习之心5 个月前
分类预测 | Matlab实现OOA-LSSVM鱼鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断
算法·分类·多特征分类预测·最小二乘支持向量机·鱼鹰算法优化·ooa-lssvm
机器学习之心7 个月前
多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出
支持向量机·多输入多输出·pso-svm·粒子群优化支持向量机
机器学习之心8 个月前
多输入多输出 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机多输入多输出预测
鲸鱼算法优化·多输入多输出预测·最小二乘支持向量机·woa-lssvm
机器学习之心8 个月前
分类预测 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测
鲸鱼算法优化·数据分类预测·最小二乘支持向量机·woa-lssvm
机器学习之心8 个月前
分类预测 | Matlab实现PSO-LSSVM粒子群算法优化最小二乘支持向量机数据分类预测
数据分类预测·pso-lssvm·最小二乘支持向量机·粒子群算法优化
机器学习之心9 个月前
分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测
分类预测·最小二乘支持向量机·人工蜂群算法优化·abc-lssvm
机器学习之心10 个月前
分类预测 | Matlab实现KPCA-ISSA-LSSVM基于核主成分分析和改进的麻雀搜索算法优化最小二乘支持向量机故障诊断分类预测
分类预测·最小二乘支持向量机·kpca-issa-lssvm·核主成分分析·改进的麻雀搜索算法优化
机器学习之心1 年前
回归预测 | Matlab基于OOA-LSSVM鱼鹰算法优化最小二乘支持向量机的数据多输入单输出回归预测
多输入单输出回归预测·最小二乘支持向量机·鱼鹰算法优化·ooa-lssvm
机器学习之心1 年前
回归预测 | Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测
最小二乘支持向量机·多变量回归预测·冠豪猪算法优化·cpo-lssvm