多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出

多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出

目录

预测效果



基本介绍

多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出

一种多输入多输出的粒子群优化支持向量机数据回归预测Matlab程序PSO-MSVR非for循环实现 原理上进行修改多输出

1.data为数据集,10个输入特征,3个输出变量。

2.main.m为主程序文件。

3.命令窗口输出MBE、MAE和R2,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据下载方式:私信博主回复多输入多输出 | MATLAB实现PSO-SVM粒子群优化支持向量机多输入多输出
clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  参数初始化
c1      = 4.494;       % 学习因子
c2      = 4.494;       % 学习因子
maxgen  =   50;        % 种群更新次数  
sizepop =    5;        % 种群规模
Vmax    =  1.0;        % 最大速度
Vmin    = -1.0;        % 最小速度
popmax  =  1.0;        % 最大边界
popmin  = -1.0;        % 最小边界
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
for i = 1 : sizepop
    pop(i, :) = rands(1, numsum);  % 初始化种群
    V(i, :) = rands(1, numsum);    % 初始化速度
    fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  迭代寻优
for i = 1 : maxgen
    for j = 1 : sizepop
        
        % 速度更新
        V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
        V(j, (V(j, :) > Vmax)) = Vmax;
        V(j, (V(j, :) < Vmin)) = Vmin;
        
        % 种群更新
        pop(j, :) = pop(j, :) + 0.2 * V(j, :);
        pop(j, (pop(j, :) > popmax)) = popmax;
        pop(j, (pop(j, :) < popmin)) = popmin;
      
        
        % 适应度值
        fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);

    end
    
    for j = 1 : sizepop

        % 个体最优更新
        if fitness(j) < fitnessgbest(j)
            gbest(j, :) = pop(j, :);
            fitnessgbest(j) = fitness(j);
        end

 

    end

    BestFit = [BestFit, fitnesszbest];    
end

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/116377961 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[3\] https://blog.csdn.net/kjm13182345320/article/details/127894261

相关推荐
俊俊谢2 天前
【机器学习】python使用支持向量机解决兵王问题(基于libsvm库)
python·机器学习·支持向量机·svm·libsvm
roman_日积跬步-终至千里3 天前
【计算机视觉(11)】损失函数与优化基础篇:如何训练线性分类器
机器学习·支持向量机·计算机视觉
YIFAN.WANG3 天前
AI中的优化7-有约束非线性规划
人工智能·机器学习·支持向量机
feifeigo1233 天前
SVM分类在高光谱遥感图像分类与预测中的应用
算法·支持向量机·分类
玦尘、4 天前
《统计学习方法》第7章——支持向量机SVM(下)【学习笔记】
机器学习·支持向量机·学习方法
fengfuyao9857 天前
基于MATLAB的支持向量机在故障诊断中的应用例程
开发语言·支持向量机·matlab
hoiii1877 天前
MATLAB实现HOG特征提取与SVM行人检测
开发语言·支持向量机·matlab
玦尘、7 天前
《统计学习方法》第7章——支持向量机SVM(上)【学习笔记】
学习·支持向量机·学习方法
fie88897 天前
基于BP神经网络和支持向量机实现风机故障诊断
人工智能·神经网络·支持向量机
qq19226388 天前
【ABS防抱死 汽车动力学 Simulink仿真模型】 可控制切换各种路面情况(干、湿、雪)和...
支持向量机