PyTorch中DistributedDataParallel使用笔记

1. 基本概念

在使用DistributedDataParallel时有一些概率必须掌握

多机多卡 含义
world_size 代表有几台机器,可以理解为几台服务器
rank 第几台机器,即第几个服务器
local_rank 某台机器中的第几块GPU
单机多卡 含义
world_size 代表机器一共有几块GPU
rank 第几块GPU
local_rank 第几块GPU,与rank相同

2. 使用方法

2.1. 修改主函数

在运行的时候,DistributedDataParallel会往你的程序中加入一个参数local_rank,所以要现在你的代码中解析这个参数,如:

python 复制代码
parser.add_argument("--local_rank", type=int, default=1, help="number of cpu threads to use during batch generation")

2.2. 初始化

python 复制代码
torch.distributed.init_process_group(backend="nccl")

os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2"  # 有几块GPU写多少

2.3. 设定device

python 复制代码
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
global device
device = torch.device("cuda", local_rank)

我没用arg.local_rank,新定义了一个local_rank变量,是因为我更信任distributed.get_rank()这个函数

这里用torch.device来写,并且加了global,是因为后面模型和数据都要用到这个device,不会出错

2.4. 模型加载到多gpu

python 复制代码
model.to(device)  # 这句不能少,最好不要用model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)  # 这句加载到多GPU上

2.5. 数据加载到gpu

python 复制代码
数据.to(device)

2.6. 启动

python 复制代码
torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:12345 train_cylinder_asym.py

参考文献

Pytorch并行计算(二): DistributedDataParallel介绍_dist.barrier_harry_tea的博客-CSDN博客

DistributedDataParallel多GPU分布式训练全过程总结 跟着做90%成功_BRiAq的博客-CSDN博客

相关推荐
Power20246661 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
YRr YRr1 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客5972 小时前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食2 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
charles_vaez2 小时前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
YRr YRr2 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
Shy9604182 小时前
Bert完形填空
python·深度学习·bert
老艾的AI世界3 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
浊酒南街3 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn