PyTorch中DistributedDataParallel使用笔记

1. 基本概念

在使用DistributedDataParallel时有一些概率必须掌握

多机多卡 含义
world_size 代表有几台机器,可以理解为几台服务器
rank 第几台机器,即第几个服务器
local_rank 某台机器中的第几块GPU
单机多卡 含义
world_size 代表机器一共有几块GPU
rank 第几块GPU
local_rank 第几块GPU,与rank相同

2. 使用方法

2.1. 修改主函数

在运行的时候,DistributedDataParallel会往你的程序中加入一个参数local_rank,所以要现在你的代码中解析这个参数,如:

python 复制代码
parser.add_argument("--local_rank", type=int, default=1, help="number of cpu threads to use during batch generation")

2.2. 初始化

python 复制代码
torch.distributed.init_process_group(backend="nccl")

os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2"  # 有几块GPU写多少

2.3. 设定device

python 复制代码
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
global device
device = torch.device("cuda", local_rank)

我没用arg.local_rank,新定义了一个local_rank变量,是因为我更信任distributed.get_rank()这个函数

这里用torch.device来写,并且加了global,是因为后面模型和数据都要用到这个device,不会出错

2.4. 模型加载到多gpu

python 复制代码
model.to(device)  # 这句不能少,最好不要用model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)  # 这句加载到多GPU上

2.5. 数据加载到gpu

python 复制代码
数据.to(device)

2.6. 启动

python 复制代码
torchrun --nproc_per_node=4 --rdzv_endpoint=localhost:12345 train_cylinder_asym.py

参考文献

Pytorch并行计算(二): DistributedDataParallel介绍_dist.barrier_harry_tea的博客-CSDN博客

DistributedDataParallel多GPU分布式训练全过程总结 跟着做90%成功_BRiAq的博客-CSDN博客

相关推荐
Rorsion11 分钟前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
Yeats_Liao2 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
Tadas-Gao3 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
2301_818730563 小时前
transformer(上)
人工智能·深度学习·transformer
木枷3 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
陈天伟教授4 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
却道天凉_好个秋4 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
Lun3866buzha4 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
大江东去浪淘尽千古风流人物5 小时前
【VLN】VLN仿真与训练三要素 Dataset,Simulators,Benchmarks(2)
深度学习·算法·机器人·概率论·slam
cyyt6 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习