batch norm 中 track_running_stats 的探索

复制代码
if self.track_running_stats:
    self.register_buffer('running_mean', torch.zeros(num_features, **factory_kwargs))
    self.register_buffer('running_var', torch.ones(num_features, **factory_kwargs))
    self.running_mean: Optional[Tensor]
    self.running_var: Optional[Tensor]
    self.register_buffer('num_batches_tracked',
                         torch.tensor(0, dtype=torch.long,
                                      **{k: v for k, v in factory_kwargs.items() if k != 'dtype'}))
    self.num_batches_tracked: Optional[Tensor]
else:
    self.register_buffer("running_mean", None)
    self.register_buffer("running_var", None)
    self.register_buffer("num_batches_tracked", None)

基于条件 self.track_running_stats,self 对象执行了一系列的操作来注册缓冲区(buffer)和属性。

如果 self.track_running_stats 为 True,表示正在跟踪运行时统计信息,那么执行以下操作:

使用 self.register_buffer() 方法注册缓冲区 running_mean,其值为全零的张量,形状为 (num_features,)。num_features 是一个变量,表示特征的数量。**factory_kwargs 是一个包含其他关键字参数的字典,用于创建张量。类似地,使用 self.register_buffer() 方法注册缓冲区 running_var,其值为全一的张量,形状与 running_mean 相同。

register a buffer that should not to be considered a model parameter. are persistent and will be saved alongside parameters

定义属性 self.running_mean 和 self.running_var,它们的类型是 Optional[Tensor],即可选的张量类型。这些属性用于存储跟踪的运行时均值和方差。

使用 self.register_buffer() 方法注册缓冲区 num_batches_tracked,其值为一个长整型张量,初始值为0。这个缓冲区用于跟踪已处理的批次数量。

定义属性 self.num_batches_tracked,也是一个 Optional[Tensor] 类型,用于存储已处理的批次数量。

如果 self.track_running_stats 为 False,表示不跟踪运行时统计信息,那么执行以下操作:

使用 self.register_buffer() 方法分别注册缓冲区 running_mean、running_var 和 num_batches_tracked,它们的值都为 None,即空值。

这些操作的目的是根据条件设置合适的缓冲区和属性,以便在模型的训练和推理过程中进行运行时统计信息的跟踪和更新。如果跟踪统计信息,则使用缓冲区存储相关的均值、方差和已处理的批次数量;否则,这些属性被设置为 None。

torch._six.string_classes 是一个字符串类的元组,用于在 PyTorch 内部处理字符串类型的兼容性。它是一个内部使用的变量,通常不需要在用户的代码中直接使用。

在 PyTorch 中,torch._six.string_classes 用于处理字符串类型的兼容性问题,尤其是在不同的 Python 版本或不同的运行环境中。它定义了一组字符串类,以便在不同的环境中都能正确处理字符串的操作。

该元组包含了多个字符串类,例如:

str:Python 3.x 中的字符串类型。

unicode:Python 2.x 中的字符串类型。

bytes:Python 2.x 和 3.x 中的字节串类型。

通过使用 torch._six.string_classes,PyTorch 可以在不同的 Python 版本中兼容地处理字符串类型,以确保代码的可移植性和兼容性。

需要注意的是,由于 torch._six.string_classes 是一个内部使用的变量,它的具体内容和实现可能会在不同的 PyTorch 版本中有所变化。因此,建议在用户代码中使用标准的字符串类型,如 str,而不是直接依赖于 torch._six.string_classes。

相关推荐
武子康43 分钟前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Mr_Xuhhh2 小时前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
2301_764441332 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天2 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082852 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php
忙碌5442 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
听风吹等浪起4 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
SunnyDays10114 小时前
如何使用Python高效转换Excel到HTML
python·excel转html
Q_Q5110082854 小时前
python+django/flask的在线学习系统的设计与实现 积分兑换礼物
spring boot·python·django·flask·node.js·php
化作星辰4 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习