【面试】找到一个数组中超过一半的数——摩尔投票算法

摩尔投票算法

思路

算法首先将数组的第一个元素作为候选众数,并设置初始计数为1。然后,遍历数组中的每个元素,如果当前元素等于候选众数,则增加计数,否则减少计数。当计数降为0时,算法更换候选众数为当前元素,并重置计数。最终,候选众数即为超过一半的数。

原理

这个算法之所以有效,是因为多数元素的出现次数一定超过其他所有元素的出现次数之和。通过不断抵消不同的元素,最终候选众数将是多数元素。

C++实现

cpp 复制代码
#include <iostream>
#include <vector>

int findMajorityElement(std::vector<int>& nums) {
    int majority = nums[0];  // 候选的众数
    int count = 1;           // 候选众数的计数

    for (int i = 1; i < nums.size(); ++i) {
        if (nums[i] == majority) {
            // 如果当前元素等于候选众数,则增加计数
            ++count;
        } else {
            // 如果当前元素不等于候选众数,则减少计数
            --count;
            if (count == 0) {
                // 当计数降为0时,更换候选众数为当前元素
                majority = nums[i];
                count = 1;
            }
        }
    }

    // 最终的候选众数即为超过一半的数
    return majority;
}

int main() {
    std::vector<int> nums = {2, 2, 1, 1, 1, 2, 2};
    int majorityElement = findMajorityElement(nums);
    std::cout << "Majority Element: " << majorityElement << std::endl;
    return 0;
}

复杂度

摩尔投票算法的时间复杂度为O(n),其中n是数组的长度,因为它只需要遍历数组一次。这使得它成为在大型数据集中找到多数元素的高效方法。

相关推荐
最初的↘那颗心3 分钟前
Java HashMap深度解析:原理、实现与最佳实践
java·开发语言·面试·hashmap·八股文
pusue_the_sun25 分钟前
数据结构——栈和队列oj练习
c语言·数据结构·算法··队列
大锦终26 分钟前
【算法】模拟专题
c++·算法
热爱23329 分钟前
前端面试必备:原型链 & this 指向总结
前端·javascript·面试
Spider_Man30 分钟前
面试官:你能手写 bind 吗?——JS this 全家桶趣味深度剖析
前端·javascript·面试
Java中文社群33 分钟前
26届双非上岸记!快手之战~
java·后端·面试
Xの哲學1 小时前
Perf使用详解
linux·网络·网络协议·算法·架构
小奋斗1 小时前
深入浅出:JavaScript中防抖与节流详解
javascript·面试
北京_宏哥1 小时前
Python零基础从入门到精通详细教程11 - python数据类型之数字(Number)-浮点型(float)详解
前端·python·面试
想不明白的过度思考者1 小时前
数据结构(排序篇)——七大排序算法奇幻之旅:从扑克牌到百亿数据的魔法整理术
数据结构·算法·排序算法