EM聚类(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️

🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《K-Means(下):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对K-Means(下) 都有一个基本的认识。下面我讲一下,EM聚类(上):数据分析 | 数据挖掘 | 十大算法之一

一、例子:如何将一份菜等分给两个人?

EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法。

我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分?

很少有人用称对菜进行称重,再计算一半的分量进行平分。大部分人的方法是先分一部分到碟子 A 中,然后再把剩余的分到碟子 B 中,再来观察碟子 A 和 B 里的菜是否一样多,哪个多就匀一些到少的那个碟子里,然后再观察碟子 A 和 B 里的是否一样多......整个过程一直重复下去,直到份量不发生变化为止。

你能从这个例子中看到三个主要的步骤:初始化参数、观察预期、重新估计。首先是先给每个碟子初始化一些菜量,然后再观察预期,这两个步骤实际上就是期望步骤(Expectation)。如果结果存在偏差就需要重新估计参数,这个就是最大化步骤(Maximization)。这两个步骤加起来也就是 EM 算法的过程。

二、EM 算法的工作原理

说到 EM 算法,我们先来看一个概念"最大似然",英文是 Maximum Likelihood,Likelihood 代表可能性,所以最大似然也就是最大可能性的意思。

什么是最大似然呢?举个例子,有一男一女两个同学,现在要对他俩进行身高的比较,谁会更高呢?根据我们的经验,相同年龄下男性的平均身高比女性的高一些,所以男同学高的可能性会很大。这里运用的就是最大似然的概念。

最大似然估计是什么呢?它指的就是一件事情已经发生了,然后反推更有可能是什么因素造成的。还是用一男一女比较身高为例,假设有一个人比另一个人高,反推他可能是男性。最大似然估计是一种通过已知结果,估计参数的方法。

那么 EM 算法是什么?它和最大似然估计又有什么关系呢?EM 算法是一种求解最大似然估计的方法,通过观测样本,来找出样本的模型参数。

再回过来看下开头我给你举的分菜的这个例子,实际上最终我们想要的是碟子 A 和碟子 B 中菜的份量,你可以把它们理解为想要求得的模型参数。然后我们通过 EM 算法中的 E 步来进行观察,然后通过 M 步来进行调整 A 和 B 的参数,最后让碟子 A 和碟子 B 的参数不再发生变化为止。

实际我们遇到的问题,比分菜复杂。我再给你举个一个投掷硬币的例子,假设我们有 A 和 B 两枚硬币,我们做了 5 组实验,每组实验投掷 10 次,然后统计出现正面的次数,实验结果如下:

投掷硬币这个过程中存在隐含的数据,即我们事先并不知道每次投掷的硬币是 A 还是 B。假设我们知道这个隐含的数据,并将它完善,可以得到下面的结果:

我们现在想要求得硬币 A 和 B 出现正面次数的概率,可以直接求得:

而实际情况是我不知道每次投掷的硬币是 A 还是 B,那么如何求得硬币 A 和硬币 B 出现正面的概率呢?

这里就需要采用 EM 算法的思想。

  1. 初始化参数。我们假设硬币 A 和 B 的正面概率(随机指定)是θA=0.5 和θB=0.9。
  2. 计算期望值。假设实验 1 投掷的是硬币 A,那么正面次数为 5 的概率为:
  3. 通过猜测的结果{A, A, B, B, A}来完善初始化的参数θA 和θB。

公式中的 C(10,5) 代表的是 10 个里面取 5 个的组合方式,也就是排列组合公式,0.5 的 5 次方乘以 0.5 的 5 次方代表的是其中一次为 5 次为正面,5 次为反面的概率,然后再乘以 C(10,5) 等于正面次数为 5 的概率。

假设实验 1 是投掷的硬币 B ,那么正面次数为 5 的概率为:

所以实验 1 更有可能投掷的是硬币 A。

然后我们对实验 2~5 重复上面的计算过程,可以推理出来硬币顺序应该是{A,A,B,B,A}。

这个过程实际上是通过假设的参数来估计未知参数,即"每次投掷是哪枚硬币"。

然后一直重复第二步和第三步,直到参数不再发生变化。

简单总结下上面的步骤,你能看出 EM 算法中的 E 步骤就是通过旧的参数来计算隐藏变量。然后在 M 步骤中,通过得到的隐藏变量的结果来重新估计参数。直到参数不再发生变化,得到我们想要的结果。

三、EM 聚类的工作原理

上面你能看到 EM 算法最直接的应用就是求参数估计。如果我们把潜在类别当做隐藏变量,样本看做观察值,就可以把聚类问题转化为参数估计问题。这也就是 EM 聚类的原理。

相比于 K-Means 算法,EM 聚类更加灵活,比如下面这两种情况,K-Means 会得到下面的聚类结果。

因为 K-Means 是通过距离来区分样本之间的差别的,且每个样本在计算的时候只能属于一个分类,称之为是硬聚类算法。而 EM 聚类在求解的过程中,实际上每个样本都有一定的概率和每个聚类相关,叫做软聚类算法。

你可以把 EM 算法理解成为是一个框架,在这个框架中可以采用不同的模型来用 EM 进行求解。常用的 EM 聚类有 GMM 高斯混合模型和 HMM 隐马尔科夫模型。GMM(高斯混合模型)聚类就是 EM 聚类的一种。比如上面这两个图,可以采用 GMM 来进行聚类。

和 K-Means 一样,我们事先知道聚类的个数,但是不知道每个样本分别属于哪一类。通常,我们可以假设样本是符合高斯分布的(也就是正态分布)。每个高斯分布都属于这个模型的组成部分(component),要分成 K 类就相当于是 K 个组成部分。这样我们可以先初始化每个组成部分的高斯分布的参数,然后再看来每个样本是属于哪个组成部分。这也就是 E 步骤。

再通过得到的这些隐含变量结果,反过来求每个组成部分高斯分布的参数,即 M 步骤。反复 EM 步骤,直到每个组成部分的高斯分布参数不变为止。

这样也就相当于将样本按照 GMM 模型进行了 EM 聚类。

四、总结

EM 算法相当于一个框架,你可以采用不同的模型来进行聚类,比如 GMM(高斯混合模型),或者 HMM(隐马尔科夫模型)来进行聚类。GMM 是通过概率密度来进行聚类,聚成的类符合高斯分布(正态分布)。而 HMM 用到了马尔可夫过程,在这个过程中,我们通过状态转移矩阵来计算状态转移的概率。HMM 在自然语言处理和语音识别领域中有广泛的应用。

在 EM 这个框架中,E 步骤相当于是通过初始化的参数来估计隐含变量。M 步骤就是通过隐含变量反推来优化参数。最后通过 EM 步骤的迭代得到模型参数。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

相关推荐
HPC_fac130520678161 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou3 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
Swift社区7 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman7 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年8 小时前
数据结构 (1)基本概念和术语
数据结构·算法
wxl7812278 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
Dong雨8 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
SoraLuna8 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie
liujjjiyun9 小时前
小R的随机播放顺序
数据结构·c++·算法
¥ 多多¥9 小时前
c++中mystring运算符重载
开发语言·c++·算法