SPSS探索性分析

前言:

本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0

本专栏所有的数据文件可在个人主页 ---我的资源中获取哦!


1.探索性分析

探索性分析是指在数据分析中,对数据集进行初步的探索和理解的过程。它的主要目标是通过可视化和描述性统计方法来识别数据的模式、趋势、异常值和潜在关系,以及了解变量之间的关联和相互影响。

在探索性分析中,常常会运用多种方法,包括数据可视化(如直方图、散点图、箱线图等)和统计描述(如均值、中位数、方差等)。通过这些方法,我们可以观察数据的分布情况、变量之间的关系、异常值的存在等,并根据这些观察结果进行进一步的分析和解释。

探索性分析有助于帮助我们了解数据集的特点、发现变量之间的关系、发现潜在模式和趋势,并为后续的数据建模和分析提供指导。它是数据分析的重要的第一步,在数据探索阶段需要进行充分的探索和理解,以确保数据的质量和准确性。

2.SPSS实现

(1)打开"data4-3"数据文件,选择"分析"------"描述性统计"------"探索",弹出如图所示的对话框:

(2)将左侧变量列表中的变量按照如图所示选入右侧,然后在下方输出选项中选择"两者"。

(3)单击统计按钮,弹出探索:统计对话框,按照如图所示选项勾选相应的选项,单击继续

(4) 单击探索:图对话框,按照下图选项勾选,然后单击继续

(5)单击"选项"按钮,弹出"探索:选项"对话框,按照下图所示选项勾选,单击继续

(6)完成所有设置后,单击确定按钮。

3.结果分析

以上为探索性分析的结果图,具体的分析可根据数据分析结果进行分析。


相关推荐
疯狂小羊啊2 小时前
WPS数据分析000008
数据分析·wps
秉寒-CHO4 小时前
认知计算与 AI 大模型:数据仓库、数据湖与数据分析的变革力量
数据仓库·人工智能·数据分析
zoney hu11 小时前
Python数据分析-Python语法基础,IPython和Jupyter-Notebooks(二)
python·数据分析
抱抱宝14 小时前
Pyecharts之图表组合与布局优化
信息可视化·数据挖掘·数据分析
抱抱宝14 小时前
Pyecharts之地图图表的强大功能
python·信息可视化·数据分析
SelectDB技术团队14 小时前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据仓库·数据分析·doris
抱抱宝15 小时前
Pyecharts之散点图的视觉扩展
python·信息可视化·数据分析
FIT2CLOUD飞致云15 小时前
案例研究丨浪潮云洲通过DataEase推进多维度数据可视化建设
数据分析·开源·数据可视化·dataease·数据大屏
狮歌~资深攻城狮16 小时前
什么时候用MPP,什么时候用TiDB?
数据库·数据仓库·分布式·数据分析·tidb