LeetCode //C - 211. Design Add and Search Words Data Structure

Design a data structure that supports adding new words and finding if a string matches any previously added string.

Implement the WordDictionary class:

  • WordDictionary() Initializes the object.
  • void addWord(word) Adds word to the data structure, it can be matched later.
  • bool search(word) Returns true if there is any string in the data structure that matches word or false otherwise. word may contain dots '.' where dots can be matched with any letter.
Example:

Input:

"WordDictionary","addWord","addWord","addWord","search","search","search","search"

\[\],\["bad"\],\["dad"\],\["mad"\],\["pad"\],\["bad"\],\[".ad"\],\["b..."\]

Output:

null,null,null,null,false,true,true,true

Explanation:

WordDictionary wordDictionary = new WordDictionary();

wordDictionary.addWord("bad");

wordDictionary.addWord("dad");

wordDictionary.addWord("mad");

wordDictionary.search("pad"); // return False

wordDictionary.search("bad"); // return True

wordDictionary.search(".ad"); // return True

wordDictionary.search("b..."); // return True

Constraints:
  • 1 <= word.length <= 25
  • word in addWord consists of lowercase English letters.
  • word in search consist of '.' or lowercase English letters.
  • There will be at most 2 dots in word for search queries.
  • At most 1 0 4 10^4 104 calls will be made to addWord and search.

From: LeetCode

Link: 211. Design Add and Search Words Data Structure


Solution:

Ideas:

1. TrieNode Structure:

Each node in the Trie is represented by a TrieNode structure. It has the following components:

  • An array of pointers, children, where each pointer corresponds to a letter in the English alphabet (26 lowercase letters).
  • A boolean flag, isEndOfWord, to signify whether a word ends at this node.

2. WordDictionary Structure:

The WordDictionary itself is represented by a structure, which holds a pointer to the root node of the Trie.

3. wordDictionaryCreate:

This function initializes the WordDictionary object and allocates memory for the root node of the Trie.

4. wordDictionaryAddWord:

This function is used to insert words into the Trie. For each character in the word, it traverses down the Trie, creating new nodes if needed, until the end of the word is reached, at which point it sets the isEndOfWord flag to true.

5. wordDictionarySearch and searchHelper:

  • The wordDictionarySearch function is used to search for a word in the Trie, with support for the . character, which can match any letter.
  • It calls a helper function searchHelper, which performs a recursive search to handle the . character.
  • If the searchHelper encounters a . character, it recursively checks all its children.
  • If it can traverse the entire word and reach a node where isEndOfWord is true, it returns true; otherwise, it returns false.

6. wordDictionaryFree and freeNode:

  • These functions deallocate the memory used by the WordDictionary and its nodes.
  • freeNode is a recursive function that frees all the child nodes before freeing the parent node.
Code:
c 复制代码
#define ALPHABET_SIZE 26

typedef struct TrieNode {
    struct TrieNode *children[ALPHABET_SIZE];
    bool isEndOfWord;
} TrieNode;

typedef struct {
    TrieNode *root;
} WordDictionary;

TrieNode* createNode() {
    TrieNode *newNode = (TrieNode *)calloc(1, sizeof(TrieNode));
    return newNode;
}

WordDictionary* wordDictionaryCreate() {
    WordDictionary *dict = (WordDictionary *)malloc(sizeof(WordDictionary));
    dict->root = createNode();
    return dict;
}

void wordDictionaryAddWord(WordDictionary* obj, char * word) {
    TrieNode *node = obj->root;
    for (int i = 0; word[i] != '\0'; i++) {
        int index = word[i] - 'a';
        if (!node->children[index])
            node->children[index] = createNode();
        node = node->children[index];
    }
    node->isEndOfWord = true;
}

bool searchHelper(TrieNode *node, char *word) {
    for (int i = 0; word[i] != '\0'; i++) {
        if (word[i] == '.') {
            for (int j = 0; j < ALPHABET_SIZE; j++) {
                if (node->children[j] && searchHelper(node->children[j], word + i + 1))
                    return true;
            }
            return false;
        } else {
            int index = word[i] - 'a';
            if (!node->children[index])
                return false;
            node = node->children[index];
        }
    }
    return node->isEndOfWord;
}

bool wordDictionarySearch(WordDictionary* obj, char * word) {
    return searchHelper(obj->root, word);
}

void freeNode(TrieNode *node) {
    for(int i = 0; i < ALPHABET_SIZE; i++)
        if(node->children[i])
            freeNode(node->children[i]);
    free(node);
}

void wordDictionaryFree(WordDictionary* obj) {
    if(!obj) return;
    freeNode(obj->root);
    free(obj);
}

/**
 * Your WordDictionary struct will be instantiated and called as such:
 * WordDictionary* obj = wordDictionaryCreate();
 * wordDictionaryAddWord(obj, word);
 
 * bool param_2 = wordDictionarySearch(obj, word);
 
 * wordDictionaryFree(obj);
*/
相关推荐
蜡笔小电芯5 分钟前
【C语言】指针与回调机制学习笔记
c语言·笔记·学习
Y1nhl6 分钟前
力扣_链表_python版本
开发语言·python·算法·leetcode·链表·职场和发展
qq_4017004122 分钟前
C语言中位运算以及获取低8位和高8位、高低位合并
c语言·开发语言·算法
CoovallyAIHub25 分钟前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉
闻缺陷则喜何志丹31 分钟前
【BFS】 P10864 [HBCPC2024] Genshin Impact Startup Forbidden II|普及+
c++·算法·宽度优先·洛谷
MicroTech20251 小时前
微算法科技(NASDAQ: MLGO)探索Grover量子搜索算法,利用量子叠加和干涉原理,实现在无序数据库中快速定位目标信息的效果。
数据库·科技·算法
今天背单词了吗9801 小时前
算法学习笔记:8.Bellman-Ford 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
java·开发语言·后端·算法·最短路径问题
手握风云-1 小时前
优选算法的链脉之韵:链表专题
数据结构·算法·链表
Coding小公仔1 小时前
LeetCode 151. 反转字符串中的单词
开发语言·c++·算法
稳兽龙1 小时前
P1098 [NOIP 2007 提高组] 字符串的展开
c++·算法·模拟