目录

参数估计法在逻辑斯谛回归的应用

让我们通过一个简单的示例来说明如何使用类似的参数估计方法在二项逻辑斯谛回归和多项逻辑斯谛回归中进行参数估计。

示例:二项逻辑斯谛回归和多项逻辑斯谛回归的参数估计

假设我们有一个数据集,其中包含学生的考试成绩和他们的通过与否情况。我们想要建立一个模型来预测学生是否会通过考试。这是一个二元分类问题(通过/不通过)。

二项逻辑斯谛回归

在二项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生通过考试的概率:

P ( 通过考试 ∣ 考试成绩 ) = 1 1 + e − ( w 0 + w 1 ⋅ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) = \frac{1}{1 + e^{-(w_0 + w_1 \cdot \text{考试成绩})}} P(通过考试∣考试成绩)=1+e−(w0+w1⋅考试成绩)1

  • P ( 通过考试 ∣ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) P(通过考试∣考试成绩) 是学生通过考试的概率;
  • w 0 w_0 w0 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩。

对于二项逻辑斯谛回归,我们可以使用极大似然估计(MLE)来估计参数 w 0 w_0 w0 和 w 1 w_1 w1 的值,以使观测到的学生通过与否的数据在模型下出现的概率最大化。

多项逻辑斯谛回归

现在,假设我们有一个类似的数据集,但不仅仅预测是否通过考试,而是预测学生的等级(A、B、C、D、F)。这是一个多元分类问题。

在多项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生等级的概率:

P ( 等级 = k ∣ 考试成绩 ) = e ( w 0 k + w 1 ⋅ 考试成绩 ) ∑ i = 1 K e ( w 0 i + w 1 ⋅ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) = \frac{e^{(w_{0k} + w_1 \cdot \text{考试成绩})}}{\sum_{i=1}^{K} e^{(w_{0i} + w_1 \cdot \text{考试成绩})}} P(等级=k∣考试成绩)=∑i=1Ke(w0i+w1⋅考试成绩)e(w0k+w1⋅考试成绩)

  • P ( 等级 = k ∣ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) P(等级=k∣考试成绩) 是学生得到等级 k k k 的概率;
  • w 0 k w_{0k} w0k 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩;
  • K K K 是等级的数量(在这个例子中是A、B、C、D、F)。

对于多项逻辑斯谛回归,我们同样可以使用MLE来估计参数 w 0 k w_{0k} w0k 和 w 1 w_1 w1 的值,以使观测到的学生等级的数据在模型下出现的概率最大化。

总之,尽管问题的复杂性不同(二元分类 vs. 多元分类),但我们可以使用类似的参数估计方法(MLE)来估计逻辑斯谛回归模型的参数,只需根据具体的问题调整模型的形式和参数数量。这个示例强调了参数估计方法在不同类型的分类问题中的通用性。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
meisongqing19 分钟前
人工智能:RNN和CNN详细分析
人工智能·神经网络
带娃的IT创业者21 分钟前
《AI大模型趣味实战》智能财务助手系统架构设计
人工智能·系统架构
Shockang27 分钟前
机器学习的一百个概念(7)独热编码
人工智能·机器学习
东芃939432 分钟前
CUDA error: no kernel image is available for execution on the device
人工智能·深度学习
计算所陈老师37 分钟前
基于论文的大模型应用:基于SmartETL的arXiv论文数据接入与预处理(一)
人工智能·数据治理
DUTBenjamin1 小时前
计算机视觉基础4——特征点及其描述子
人工智能·计算机视觉
陈奕昆1 小时前
IAGCN:登上《Nature》的深度学习可解释性情感分析模型突破
人工智能·深度学习
煤烦恼1 小时前
scala类与集合
java·大数据·开发语言·人工智能·scala
机器学习之心1 小时前
回归预测 | Matlab实现NRBO-Transformer-GRU多变量回归预测
matlab·回归·transformer·多变量回归预测
AAIshangyanxiu1 小时前
智能气候:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·深度学习·机器学习·ai agent·全球气候变化·ai气候变化·弄作物模型