参数估计法在逻辑斯谛回归的应用

让我们通过一个简单的示例来说明如何使用类似的参数估计方法在二项逻辑斯谛回归和多项逻辑斯谛回归中进行参数估计。

示例:二项逻辑斯谛回归和多项逻辑斯谛回归的参数估计

假设我们有一个数据集,其中包含学生的考试成绩和他们的通过与否情况。我们想要建立一个模型来预测学生是否会通过考试。这是一个二元分类问题(通过/不通过)。

二项逻辑斯谛回归

在二项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生通过考试的概率:

P ( 通过考试 ∣ 考试成绩 ) = 1 1 + e − ( w 0 + w 1 ⋅ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) = \frac{1}{1 + e^{-(w_0 + w_1 \cdot \text{考试成绩})}} P(通过考试∣考试成绩)=1+e−(w0+w1⋅考试成绩)1

  • P ( 通过考试 ∣ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) P(通过考试∣考试成绩) 是学生通过考试的概率;
  • w 0 w_0 w0 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩。

对于二项逻辑斯谛回归,我们可以使用极大似然估计(MLE)来估计参数 w 0 w_0 w0 和 w 1 w_1 w1 的值,以使观测到的学生通过与否的数据在模型下出现的概率最大化。

多项逻辑斯谛回归

现在,假设我们有一个类似的数据集,但不仅仅预测是否通过考试,而是预测学生的等级(A、B、C、D、F)。这是一个多元分类问题。

在多项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生等级的概率:

P ( 等级 = k ∣ 考试成绩 ) = e ( w 0 k + w 1 ⋅ 考试成绩 ) ∑ i = 1 K e ( w 0 i + w 1 ⋅ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) = \frac{e^{(w_{0k} + w_1 \cdot \text{考试成绩})}}{\sum_{i=1}^{K} e^{(w_{0i} + w_1 \cdot \text{考试成绩})}} P(等级=k∣考试成绩)=∑i=1Ke(w0i+w1⋅考试成绩)e(w0k+w1⋅考试成绩)

  • P ( 等级 = k ∣ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) P(等级=k∣考试成绩) 是学生得到等级 k k k 的概率;
  • w 0 k w_{0k} w0k 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩;
  • K K K 是等级的数量(在这个例子中是A、B、C、D、F)。

对于多项逻辑斯谛回归,我们同样可以使用MLE来估计参数 w 0 k w_{0k} w0k 和 w 1 w_1 w1 的值,以使观测到的学生等级的数据在模型下出现的概率最大化。

总之,尽管问题的复杂性不同(二元分类 vs. 多元分类),但我们可以使用类似的参数估计方法(MLE)来估计逻辑斯谛回归模型的参数,只需根据具体的问题调整模型的形式和参数数量。这个示例强调了参数估计方法在不同类型的分类问题中的通用性。

相关推荐
刘什么洋啊Zz1 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-2 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默3 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
AnnyYoung4 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND5 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木5 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳5 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客6 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱6 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全
Elastic 中国社区官方博客7 小时前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina