参数估计法在逻辑斯谛回归的应用

让我们通过一个简单的示例来说明如何使用类似的参数估计方法在二项逻辑斯谛回归和多项逻辑斯谛回归中进行参数估计。

示例:二项逻辑斯谛回归和多项逻辑斯谛回归的参数估计

假设我们有一个数据集,其中包含学生的考试成绩和他们的通过与否情况。我们想要建立一个模型来预测学生是否会通过考试。这是一个二元分类问题(通过/不通过)。

二项逻辑斯谛回归

在二项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生通过考试的概率:

P ( 通过考试 ∣ 考试成绩 ) = 1 1 + e − ( w 0 + w 1 ⋅ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) = \frac{1}{1 + e^{-(w_0 + w_1 \cdot \text{考试成绩})}} P(通过考试∣考试成绩)=1+e−(w0+w1⋅考试成绩)1

  • P ( 通过考试 ∣ 考试成绩 ) P(\text{通过考试}|\text{考试成绩}) P(通过考试∣考试成绩) 是学生通过考试的概率;
  • w 0 w_0 w0 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩。

对于二项逻辑斯谛回归,我们可以使用极大似然估计(MLE)来估计参数 w 0 w_0 w0 和 w 1 w_1 w1 的值,以使观测到的学生通过与否的数据在模型下出现的概率最大化。

多项逻辑斯谛回归

现在,假设我们有一个类似的数据集,但不仅仅预测是否通过考试,而是预测学生的等级(A、B、C、D、F)。这是一个多元分类问题。

在多项逻辑斯谛回归中,我们可以使用以下模型来建立预测学生等级的概率:

P ( 等级 = k ∣ 考试成绩 ) = e ( w 0 k + w 1 ⋅ 考试成绩 ) ∑ i = 1 K e ( w 0 i + w 1 ⋅ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) = \frac{e^{(w_{0k} + w_1 \cdot \text{考试成绩})}}{\sum_{i=1}^{K} e^{(w_{0i} + w_1 \cdot \text{考试成绩})}} P(等级=k∣考试成绩)=∑i=1Ke(w0i+w1⋅考试成绩)e(w0k+w1⋅考试成绩)

  • P ( 等级 = k ∣ 考试成绩 ) P(\text{等级} = k|\text{考试成绩}) P(等级=k∣考试成绩) 是学生得到等级 k k k 的概率;
  • w 0 k w_{0k} w0k 和 w 1 w_1 w1 是模型的参数,需要估计;
  • 考试成绩 \text{考试成绩} 考试成绩 是学生的考试成绩;
  • K K K 是等级的数量(在这个例子中是A、B、C、D、F)。

对于多项逻辑斯谛回归,我们同样可以使用MLE来估计参数 w 0 k w_{0k} w0k 和 w 1 w_1 w1 的值,以使观测到的学生等级的数据在模型下出现的概率最大化。

总之,尽管问题的复杂性不同(二元分类 vs. 多元分类),但我们可以使用类似的参数估计方法(MLE)来估计逻辑斯谛回归模型的参数,只需根据具体的问题调整模型的形式和参数数量。这个示例强调了参数估计方法在不同类型的分类问题中的通用性。

相关推荐
爱学英语的程序员6 小时前
让AI 帮我做了个个人博客(附提示词!)
人工智能·git·vue·github·node·个人博客
lixzest6 小时前
Transformer、PyTorch与人工智能大模型的关系
人工智能
其美杰布-富贵-李6 小时前
PyTorch Lightning
人工智能·pytorch·python·training
SiYuanFeng6 小时前
pytorch常用张量构造词句表和nn.组件速查表
人工智能·pytorch·python
MistaCloud6 小时前
Pytorch深入浅出(十四)之完整的模型训练测试套路
人工智能·pytorch·python·深度学习
知乎的哥廷根数学学派6 小时前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
WLJT1231231236 小时前
电子元器件:智能时代的核心基石
大数据·人工智能·科技·安全·生活
RockHopper20257 小时前
约束的力量:从生物认知到人工智能的跨越
人工智能·具身智能·具身认知
未来之窗软件服务7 小时前
幽冥大陆(九十六)分词服务训练 —东方仙盟练气期
人工智能·仙盟创梦ide·东方仙盟
rgeshfgreh7 小时前
Python正则与模式匹配实战技巧
大数据·人工智能