GD32F103x 定时器

1. 定时器的基本介绍

STM32的定时器主要分为三种:高级定时器、通用定时器、基本定时器

即:高级定时器具有捕获/比较通道和互补输出,死区时间,通用定时器只有捕获/比较通道,基本定时器没有以上两者。

1. 基本定时器

1.时钟源

时钟源来自RCC的CK_TIMER,就是内部时钟(CK_INT)直接经过控制器传给时基单元充当

PSC_CLK。

2.控制器

控制定时器的复位、使能、计数、DAC触发

3.基本时基单元

1>预分频器(PSC)perscaler

分频、得到计时器的时钟,即CNT计数1次所需要的时间,预分频器时16位的寄存器、所以可分频为1-65536。

基本定时器只能选择内部时钟,故预分频器直接输入端,即内部时钟CK_INT(一般为72MHz)

预分频器(PSC)写0(1分频或者不分频):则SK_CNT输出72MHz,

写1(2分频):输出36MHz,写2(3分频):输出24MHz。

故实际分频系数=预分配系数+1(分频器是16位,故最大位65525)。

2>计数器(CNT)counter

用来计数,到达设定值后,会产生中断。

3>自动重装寄存器(ARR)Auto Reload Register

CNT加到ARR的值之后,会产生一个事件或中断或DMA请求,中断用得比较多

UI(向上的箭头)中断响应,更新中断后会通向NVIC,再通向CPU

U(向下的箭头)事件响应:触发其他外设工作

4.主模式触发DAC功能

1)能让内部的硬件再不受程序的控制下实现自动运行,若利用好,可以极大地减轻CPU的负担。

2)用途:使我们使用DAC的时候,用DAC输出一段波形,则需要每隔一段事件触发一次DAC,让它输出下一个电压点。

用正常思维实现:先设置一个定时器产生中断,每隔一段时间再中断程序中调用代码手动触发一次DAC转换,然后DAC输出。这样会使主程序处于频繁被中断的状态,会影响主程序的运行和其他中断的响应

故定时器设置了一个主模式,使用主模式可以把定时器的更新事件映射到触发输出TRGO(Trigger Out)的位置,然后TRGO直接接到DAC的触发转换引脚上,这样定时器的更新就不需要用中断来触发DAC(数模转换)转换了

仅仅需要将更新事件通过主模式映射到TRGO,然后TRGO就会直接去触发DAC,整个过程不需要软件的参与,实现了硬件的自动化,这就是主模式的作用。

2. 通用定时器

框图可以分为四个大部分,分别是:①时钟产生器部分,②时基单元部分,③输入捕获部分、④输出比较部分。

位于低速的APB1总线上(APB1)

16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。

16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。

4 个独立通道(TIMx_CH1~4),这些通道可以用来作为:

① 输入捕获

② 输出比较

③ PWM 生成(边缘或中间对齐模式)

④ 单脉冲模式输出

可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。

如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器):

①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发)

②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数)

③输入捕获

④输出比较

⑤支持针对定位的增量(正交)编码器和霍尔传感器电路

⑥触发输入作为外部时钟或者按周期的电流管理

STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。

使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。

  1. 计数器模式

通用定时器可以向上计数、向下计数、向上向下双向计数模式。

①向上计数模式:计数器从0计数到自动加载值(TIMx_ARR),然后重新从0开始计数并且产生一个计数器溢出事件。

②向下计数模式:计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。

③中央对齐模式(向上/向下计数):计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。

1. 输出PWM波

PWM模式运行产生:

定时器2、3和4可以产生4独立的信号

频率和占空比可以进行如下设定:

一个自动重载寄存器用于设定PWM的周期;

每个PWM通道有一个捕捉比较寄存器用于设定占空时间。

例如:产生一个40KHz的PWM信号:在定时器2的时钟为72MHz下,占空比为50% 。预分频寄存器设置为0 (计数器的时钟为TIM1CLK/(O+1)),自动重载寄存器设为 1799,CCRx寄存器设为899。

  • 两种可设置PWM模式:

边沿对齐模式(PWM0或者PWM1)
输出 PWM 功能
在 PWM 输出模式下 ( PWM 模 式 0 是配置 CHxCOMCTL 为 3'b110 , PWM 模式 1 是 配 置
CHxCOMCTL 为 3'b111 ),通道根据 TIMERx_CAR 寄存器和 TIMERx_CHxCV 寄存器的值,输出
PWM 波形。
根据计数模式,我们可以分为两种 PWM 波: EAPWM( 边沿对齐 PWM) 和 CAPWM( 中央对齐
PWM) 。
EAPWM 的周期由 TIMERx_CAR 寄存器值决定,占空比由 TIMERx_CHxCV 寄存器值决定。
15-42. EAPWM 时序图(边沿) 显示了 EAPWM 的输出波形和中断。
CAPWM 的周期由(2*TIMERx_CAR 寄存器值)决定,占空比由(2*TIMERx_CHxCV 寄存器
值)决定 。 15-43. CAPWM 时序图(中心) 显示了 CAPWM 的输出波形和中断。
在 PWM0 模式下 (CHxCOMCTL==3'b110) , 如 果 TIMERx_CHxCV 寄 存 器 的 值 大 于
TIMERx_CAR 寄存器的值,通道输出一直为有效电平。
在 PWM0 模式下 (CHxCOMCTL==3'b110) ,如果 TIMERx_CHxCV 寄存器的值等于 0 ,通道输出
一直为无效电平。

3. 高级定时器

2.定时器应用

总结:定时器功能是很强大的。大多内容都是手册上 看的。我们需要定时器什么功能根据手册一步一步来配置。也这一看官方的dome快速上手。

3. 输出PWM不断修改占空比来实现呼吸灯。(通用定时器2)

PWM_pulse.h

cpp 复制代码
#ifndef PWM_PULSE_H
#define PWM_PULSE_H

#include "gd32f10x.h"

void timer2_pwm_init(uint16_t psr, uint16_t arr);   //初始化timer2的pwm输出参数
void timer2_pwm_duty_set(uint16_t duty);   // 调整pwm的占空比

#endif

PWM_pulse.c

cpp 复制代码
#include "pwm_pulse.h"

//功能:初始化timer2的pwm输出参数
//psr: 预分频
//arr: 自动重装载

void timer2_pwm_init(uint16_t psr, uint16_t arr){
	timer_parameter_struct timer_init_struct;
	timer_oc_parameter_struct timer_oc_init_struct;
	
	// 时钟源和io口pb0的初始化
	rcu_periph_clock_enable(RCU_TIMER2); /* 开启定时器的时钟 */
	rcu_periph_clock_enable(RCU_GPIOB);  /* 开启GPIOB的时钟 */
	rcu_periph_clock_enable(RCU_AF);     /* 开启复用的时钟 */
	
	gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_0); /* GPIO初始化 */
	
	// 初始化timer2
	timer_deinit(TIMER2);
	timer_init_struct.prescaler = psr;
	timer_init_struct.period = arr;  //自动装载值
	timer_init_struct.alignedmode = TIMER_COUNTER_EDGE;  //边沿对齐
	timer_init_struct.counterdirection = TIMER_COUNTER_UP; //计数方向
	timer_init(TIMER2, &timer_init_struct);
	
	// PWM的初始化
	timer_oc_init_struct.outputstate = TIMER_CCX_ENABLE;  //使能通道
	timer_channel_output_config(TIMER2, TIMER_CH_2, &timer_oc_init_struct);
	
	timer_channel_output_mode_config(TIMER2,TIMER_CH_2, TIMER_OC_MODE_PWM0); /* PWM0模式 */
	
	// 使能timer2
	timer_enable(TIMER2);
}

// 功能:调整pwm的占空比
// duty: 捕获/比较
void timer2_pwm_duty_set(uint16_t duty){
	timer_channel_output_pulse_value_config(TIMER2, TIMER_CH_2, duty); //设置 捕获/比较值
}

main.c

对PB0上的LED现在呼吸灯。

硬件电路:

把PB0配置成定时器2复用功能。

在代码中ARR:100 捕获寄存器:从1~ 100。(它决定占空比大小)。

简单画了一个图:在代码里选择的是PWM0模式。如果有示波器就会看到占空比不停变大,然后又不停的变小。不停循环。LED从暗到亮。然后又从亮到暗。不停循环。如果改成PWM1模式刚好反过来。具体可以自己试。

相关推荐
美式小田1 小时前
单片机学习笔记 9. 8×8LED点阵屏
笔记·单片机·嵌入式硬件·学习
兰_博2 小时前
51单片机-独立按键与数码管联动
单片机·嵌入式硬件·51单片机
时光の尘2 小时前
C语言菜鸟入门·关键字·float以及double的用法
运维·服务器·c语言·开发语言·stm32·单片机·c
嵌入式大圣4 小时前
单片机结合OpenCV
单片机·嵌入式硬件·opencv
日晨难再5 小时前
嵌入式:STM32的启动(Startup)文件解析
stm32·单片机·嵌入式硬件
yufengxinpian6 小时前
集成了高性能ARM Cortex-M0+处理器的一款SimpleLink 2.4 GHz无线模块-RF-BM-2340B1
单片机·嵌入式硬件·音视频·智能硬件
__基本操作__7 小时前
历遍单片机下的IIC设备[ESP--0]
单片机·嵌入式硬件
网易独家音乐人Mike Zhou13 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
zy张起灵13 小时前
48v72v-100v转12v 10A大功率转换电源方案CSM3100SK
经验分享·嵌入式硬件·硬件工程
PegasusYu16 小时前
STM32CUBEIDE FreeRTOS操作教程(九):eventgroup事件标志组
stm32·教程·rtos·stm32cubeide·free-rtos·eventgroup·时间标志组