LogisticRegression 与 LogisticRegressionCV 的区别

LogisticRegression 和 LogisticRegressionCV 是 scikit-learn 库中用于逻辑回归的两个类,它们之间的区别如下。

1、LogisticRegression

LogisticRegression 是用于二分类或多分类问题的逻辑回归模型。可以使用不同的优化算法(如拟牛顿法、坐标下降法)来拟合逻辑回归模型。可以根据需要设置正则化项(L1正则化或L2正则化)以控制模型的复杂度。可以通过调整超参数(如正则化强度、优化算法等)来改善模型性能。

示例代码:

复制代码
from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()
lr.fit(X, y)

2、LogisticRegressionCV

LogisticRegressionCV 是基于交叉验证的逻辑回归模型,用于自动选择最佳的正则化强度。在拟合过程中,它会执行交叉验证来评估不同正则化强度的性能,并选择性能最佳的正则化强度。

可以指定要尝试的正则化强度值的范围,以及交叉验证的折数。自动选择的最佳正则化强度可以通过LogisticRegressionCV对象的C_属性获得。

示例代码:

复制代码
from sklearn.linear_model import LogisticRegressionCV

lr_cv = LogisticRegressionCV(cv=5)
lr_cv.fit(X, y)
best_C = lr_cv.C_

3、总结

LogisticRegression 用于拟合逻辑回归模型,并手动调整超参数。LogisticRegressionCV 基于交叉验证自动选择最佳的正则化强度,无需手动调整超参数。

根据你的需求,你可以选择使用其中之一。如果你希望手动调整正则化强度或其他超参数,可以使用LogisticRegression。如果你希望自动选择最佳的正则化强度,并进行交叉验证来提高模型性能,可以使用LogisticRegressionCV。

相关推荐
yorushika_1 小时前
python打卡训练营打卡记录day35
python·深度学习·机器学习·超参数
星释3 小时前
Mac Python 安装依赖出错 error: externally-managed-environment
开发语言·python·macos
小迅先生4 小时前
AI开发 | Web API框架选型-FastAPI
开发语言·python·fastapi
Takina~4 小时前
python打卡day35
python·深度学习·机器学习
马拉AI4 小时前
创新点!贝叶斯优化、CNN与LSTM结合,实现更准预测、更快效率、更高性能!
人工智能·深度学习·机器学习
程序员秘密基地5 小时前
基于pycharm,python,flask,sklearn,orm,mysql,在线深度学习sql语句检测系统
python·web安全·机器学习·网络安全·scikit-learn
赶紧去巡山5 小时前
pyhton基础【2】基本语法
python
kovlistudio6 小时前
机器学习第二十七讲:Kaggle → 参加机器学习界的奥林匹克
人工智能·机器学习
Ma_si6 小时前
PyLink 使用指南
网络·python·嵌入式硬件
Blossom.1186 小时前
从零开始构建一个区块链应用:技术解析与实践指南
人工智能·深度学习·神经网络·物联网·机器学习·web3·区块链