生成对抗网络入门案例

前言

生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试生成与训练数据相似的新样本,而判别器则试图区分生成器生成的样本和真实训练数据。

下面是一个简单的对抗生成网络的入门例子,用于生成手写数字图像:

实现过程

1、导入必要的库和模块

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

2、加载MNIST数据集

python 复制代码
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

3、定义生成器模型

python 复制代码
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

4、定义判别器模型

python 复制代码
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

5、编译判别器模型

python 复制代码
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

6、冻结判别器模型的权重

python 复制代码
discriminator.trainable = False

7、定义GAN模型

python 复制代码
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

8、编译GAN模型

python 复制代码
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

9、定义训练函数

python 复制代码
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)

10、保存生成的图像

python 复制代码
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()

11、训练GAN模型

python 复制代码
epochs = 10000
batch_size = 128
sample_interval = 1000

完整代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

# 定义生成器模型
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

# 定义判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

# 冻结判别器模型的权重
discriminator.trainable = False

# 定义GAN模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

# 编译GAN模型
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

# 定义训练函数
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)
            
# 保存生成的图像
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()
    
# 训练GAN模型
epochs = 10000
batch_size = 128
sample_interval = 1000

train_gan(epochs, batch_size, sample_interval)

这个例子使用了MNIST数据集,生成手写数字图像。生成器和判别器模型使用了卷积神经网络的结构。在训练过程中,生成器试图生成逼真的手写数字图像,而判别器则试图区分真实图像和生成图像。通过反复迭代训练生成器和判别器,GAN模型能够逐渐生成更逼真的手写数字图像。生成的图像会保存在gan_images文件夹中。

相关推荐
Codebee7 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º7 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys7 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56787 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子7 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能8 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144878 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile8 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5778 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥8 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造