生成对抗网络入门案例

前言

生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试生成与训练数据相似的新样本,而判别器则试图区分生成器生成的样本和真实训练数据。

下面是一个简单的对抗生成网络的入门例子,用于生成手写数字图像:

实现过程

1、导入必要的库和模块

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

2、加载MNIST数据集

python 复制代码
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

3、定义生成器模型

python 复制代码
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

4、定义判别器模型

python 复制代码
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

5、编译判别器模型

python 复制代码
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

6、冻结判别器模型的权重

python 复制代码
discriminator.trainable = False

7、定义GAN模型

python 复制代码
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

8、编译GAN模型

python 复制代码
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

9、定义训练函数

python 复制代码
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)

10、保存生成的图像

python 复制代码
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()

11、训练GAN模型

python 复制代码
epochs = 10000
batch_size = 128
sample_interval = 1000

完整代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

# 定义生成器模型
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

# 定义判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

# 冻结判别器模型的权重
discriminator.trainable = False

# 定义GAN模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

# 编译GAN模型
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

# 定义训练函数
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)
            
# 保存生成的图像
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()
    
# 训练GAN模型
epochs = 10000
batch_size = 128
sample_interval = 1000

train_gan(epochs, batch_size, sample_interval)

这个例子使用了MNIST数据集,生成手写数字图像。生成器和判别器模型使用了卷积神经网络的结构。在训练过程中,生成器试图生成逼真的手写数字图像,而判别器则试图区分真实图像和生成图像。通过反复迭代训练生成器和判别器,GAN模型能够逐渐生成更逼真的手写数字图像。生成的图像会保存在gan_images文件夹中。

相关推荐
aneasystone本尊9 小时前
深入 Dify 应用的会话流程之配置管理
人工智能
数据要素X9 小时前
寻梦数据空间 | 路径篇:从概念验证到规模运营的“诊-规-建-运”实施指南
大数据·人工智能·数据要素·数据资产·可信数据空间
Goboy9 小时前
什么是大模型:程序员的"第二个大脑"
人工智能·机器学习·程序员
WHFENGHE10 小时前
水位流量在线监测装置:精准监测与智能管理的科技基石
人工智能·科技
大千AI助手10 小时前
Shapiro-Wilk检验:原理、应用与实现
人工智能·假设检验·正态分布·小样本·shapiro-wilk检验·相似性·w统计量
AI新兵10 小时前
深度学习基础:从原理到实践——第二章神经网络(上)
人工智能·深度学习·神经网络
独立开发者Pony10 小时前
【开源】假期爆肝我做了一个全新的Ai写小说工具模式
人工智能·开源·node.js
rengang6611 小时前
08-决策树:探讨基于树结构的分类和回归方法及其优缺点
人工智能·算法·决策树·机器学习·分类·回归
Michelle802311 小时前
23大数据 数据挖掘复习1
大数据·人工智能·数据挖掘