生成对抗网络入门案例

前言

生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试生成与训练数据相似的新样本,而判别器则试图区分生成器生成的样本和真实训练数据。

下面是一个简单的对抗生成网络的入门例子,用于生成手写数字图像:

实现过程

1、导入必要的库和模块

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

2、加载MNIST数据集

python 复制代码
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

3、定义生成器模型

python 复制代码
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

4、定义判别器模型

python 复制代码
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

5、编译判别器模型

python 复制代码
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

6、冻结判别器模型的权重

python 复制代码
discriminator.trainable = False

7、定义GAN模型

python 复制代码
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

8、编译GAN模型

python 复制代码
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

9、定义训练函数

python 复制代码
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)

10、保存生成的图像

python 复制代码
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()

11、训练GAN模型

python 复制代码
epochs = 10000
batch_size = 128
sample_interval = 1000

完整代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

# 定义生成器模型
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

# 定义判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

# 冻结判别器模型的权重
discriminator.trainable = False

# 定义GAN模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

# 编译GAN模型
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

# 定义训练函数
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)
            
# 保存生成的图像
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()
    
# 训练GAN模型
epochs = 10000
batch_size = 128
sample_interval = 1000

train_gan(epochs, batch_size, sample_interval)

这个例子使用了MNIST数据集,生成手写数字图像。生成器和判别器模型使用了卷积神经网络的结构。在训练过程中,生成器试图生成逼真的手写数字图像,而判别器则试图区分真实图像和生成图像。通过反复迭代训练生成器和判别器,GAN模型能够逐渐生成更逼真的手写数字图像。生成的图像会保存在gan_images文件夹中。

相关推荐
芯盾时代1 小时前
安全大模型智驱网络和数据安全效能跃迁
网络·人工智能·安全·网络安全
彩讯股份3006342 小时前
打造多模态交互新范式|彩讯股份中标2025年中国移动和留言平台AI智能体研发项目
人工智能
思通数科大数据舆情2 小时前
工业安全零事故的智能守护者:一体化AI智能安防平台
人工智能·安全·目标检测·计算机视觉·目标跟踪·数据挖掘·知识图谱
AI360labs_atyun3 小时前
2025 高考:AI 都在哪些地方发挥了作用
人工智能·科技·ai·高考
Yxh181377845544 小时前
短视频矩阵系统技术saas源头6年开发构架
人工智能·矩阵
m0_634448894 小时前
图上合成:用于大型语言模型持续预训练的知识合成数据生成
人工智能·语言模型·自然语言处理
Studying 开龙wu5 小时前
机器学习监督学习实战五:六种算法对声呐回波信号进行分类
学习·算法·机器学习
张较瘦_5 小时前
[论文阅读] 人工智能 | 利用负信号蒸馏:用REDI框架提升LLM推理能力
论文阅读·人工智能
1296004525 小时前
机器学习的可解释性
人工智能·深度学习·自然语言处理·transformer
何中应5 小时前
第一个人工智能(AI)问答Demo
java·人工智能·语言模型