生成对抗网络入门案例

前言

生成对抗网络(Generative Adversarial Networks,简称GANs)是一种用于生成新样本的机器学习模型。它由两个主要组件组成:生成器(Generator)和判别器(Discriminator)。生成器尝试生成与训练数据相似的新样本,而判别器则试图区分生成器生成的样本和真实训练数据。

下面是一个简单的对抗生成网络的入门例子,用于生成手写数字图像:

实现过程

1、导入必要的库和模块

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

2、加载MNIST数据集

python 复制代码
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

3、定义生成器模型

python 复制代码
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

4、定义判别器模型

python 复制代码
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

5、编译判别器模型

python 复制代码
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

6、冻结判别器模型的权重

python 复制代码
discriminator.trainable = False

7、定义GAN模型

python 复制代码
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

8、编译GAN模型

python 复制代码
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

9、定义训练函数

python 复制代码
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)

10、保存生成的图像

python 复制代码
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()

11、训练GAN模型

python 复制代码
epochs = 10000
batch_size = 128
sample_interval = 1000

完整代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Reshape
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.optimizers import Adam

# 加载MNIST数据集
(x_train, _), (_, _) = mnist.load_data()
x_train = x_train / 255.0
x_train = np.expand_dims(x_train, axis=3)

# 定义生成器模型
generator = Sequential()
generator.add(Dense(7*7*128, input_shape=(100,), activation='relu'))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', activation='relu'))
generator.add(Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', activation='sigmoid'))

# 定义判别器模型
discriminator = Sequential()
discriminator.add(Conv2D(64, (3, 3), strides=(2, 2), padding='same', input_shape=(28, 28, 1), activation='relu'))
discriminator.add(Conv2D(128, (3, 3), strides=(2, 2), padding='same', activation='relu'))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))

# 编译判别器模型
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5), metrics=['accuracy'])

# 冻结判别器模型的权重
discriminator.trainable = False

# 定义GAN模型
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

# 编译GAN模型
gan.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.0002, beta_1=0.5))

# 定义训练函数
def train_gan(epochs, batch_size, sample_interval):
    for epoch in range(epochs):
        # 生成随机噪声作为输入
        noise = np.random.normal(0, 1, (batch_size, 100))
        
        # 生成假样本
        generated_images = generator.predict(noise)
        
        # 从真实样本中随机选择一批样本
        real_images = x_train[np.random.randint(0, x_train.shape[0], batch_size)]
        
        # 训练判别器
        discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
        discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
        discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
        
        # 训练生成器
        noise = np.random.normal(0, 1, (batch_size, 100))
        generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
        
        # 打印损失
        if epoch % sample_interval == 0:
            print(f"Epoch {epoch}/{epochs}, Discriminator Loss: {discriminator_loss[0]}, Generator Loss: {generator_loss}")
            
            # 保存生成的图像
            save_images(epoch)
            
# 保存生成的图像
def save_images(epoch):
    rows, cols = 5, 5
    noise = np.random.normal(0, 1, (rows * cols, 100))
    generated_images = generator.predict(noise)
    generated_images = 0.5 * generated_images + 0.5
    fig, axs = plt.subplots(rows, cols)
    idx = 0
    for i in range(rows):
        for j in range(cols):
            axs[i, j].imshow(generated_images[idx, :, :, 0], cmap='gray')
            axs[i, j].axis('off')
            idx += 1
    fig.savefig(f"gan_images/mnist_{epoch}.png")
    plt.close()
    
# 训练GAN模型
epochs = 10000
batch_size = 128
sample_interval = 1000

train_gan(epochs, batch_size, sample_interval)

这个例子使用了MNIST数据集,生成手写数字图像。生成器和判别器模型使用了卷积神经网络的结构。在训练过程中,生成器试图生成逼真的手写数字图像,而判别器则试图区分真实图像和生成图像。通过反复迭代训练生成器和判别器,GAN模型能够逐渐生成更逼真的手写数字图像。生成的图像会保存在gan_images文件夹中。

相关推荐
Shawn_Shawn3 小时前
人工智能入门概念介绍
人工智能
极限实验室3 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9964 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥4 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉4 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明5 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习5 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考5 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234566 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区6 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习