深度学习笔记之线性代数

深度学习笔记之线性代数

一、向量

在数学表示法中,向量通常记为粗体小写的符号(例如,xyz )当向量表示数据集中的样本时,它们的值具有一定的现实意义。例如研究医院患者可能面临的心脏病发作风险,用一个向量表示一个患者,其分量为最近的生命特征、胆固醇水平、每天运动时间等。

可以使用下标来引用向量的任意元素

使用切片访问

向量只是一个数字数组,就像每个数组都有一个长度,向量的长度通常称为向量的维度(dimension)

可以通过调用Python的内置len()函数来访问张量的长度

当张量表示一个向量时,可以通过.shape属性访问向量的长度。对于只有一个轴的张量,形状只有一个元素。

二、矩阵

矩阵将向量从一阶推广到二阶。通常用粗体大写字母表示矩阵(例如X,Y,Z),在代码中表示具有两个轴的张量。

索引访问

求矩阵的转置

判断一个矩阵是否为对称矩阵。即这个矩阵是否等于它的转置矩阵。

三、张量算法的基本性质

两个形状相同的矩阵相加,会在这两个矩阵上执行元素加法

两个矩阵按元素乘法成为Hadamard积

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都与标量相加或相乘

四、降维

计算向量中元素的和

为了通过求和所有行元素来降维,可以在调用函数时制定axis=0

也可以指定axis=1将通过汇总所有列的元素降维

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和

计算任意形状张量的平均值

五、非降维求和

如果我们想沿某个轴计算A元素的累积总和, 比如axis=0(按行计算),可以调用cumsum函数。 此函数不会沿任何轴降低输入张量的维度。

六、点积

七、矩阵-向量积

八、矩阵-矩阵乘法

九、范数


相关推荐
我不是小upper19 分钟前
L1和L2核心区别 !!--part 2
人工智能·深度学习·算法·机器学习
代码小将1 小时前
java中static学习笔记
java·笔记·学习
研一计算机小白一枚1 小时前
VRFF: Video Registration and FusionFramework 论文详解
人工智能·深度学习·计算机视觉
Takina~2 小时前
python打卡day48
pytorch·python·深度学习
序属秋秋秋3 小时前
《C++初阶之入门基础》【普通引用 + 常量引用 + 内联函数 + nullptr】
开发语言·c++·笔记
Bwcx_lzp4 小时前
MCP和Function Calling
人工智能·笔记
张哈大4 小时前
【 java 虚拟机知识 第一篇 】
java·开发语言·jvm·笔记·缓存
zhaoyang03015 小时前
css3笔记 (1) 自用
前端·javascript·css·vue.js·笔记·html·css3
moxiaoran57539 小时前
uni-app学习笔记二十九--数据缓存
笔记·学习·uni-app
殇者知忧9 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉