深度学习笔记之线性代数

深度学习笔记之线性代数

一、向量

在数学表示法中,向量通常记为粗体小写的符号(例如,xyz )当向量表示数据集中的样本时,它们的值具有一定的现实意义。例如研究医院患者可能面临的心脏病发作风险,用一个向量表示一个患者,其分量为最近的生命特征、胆固醇水平、每天运动时间等。

可以使用下标来引用向量的任意元素

使用切片访问

向量只是一个数字数组,就像每个数组都有一个长度,向量的长度通常称为向量的维度(dimension)

可以通过调用Python的内置len()函数来访问张量的长度

当张量表示一个向量时,可以通过.shape属性访问向量的长度。对于只有一个轴的张量,形状只有一个元素。

二、矩阵

矩阵将向量从一阶推广到二阶。通常用粗体大写字母表示矩阵(例如X,Y,Z),在代码中表示具有两个轴的张量。

索引访问

求矩阵的转置

判断一个矩阵是否为对称矩阵。即这个矩阵是否等于它的转置矩阵。

三、张量算法的基本性质

两个形状相同的矩阵相加,会在这两个矩阵上执行元素加法

两个矩阵按元素乘法成为Hadamard积

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都与标量相加或相乘

四、降维

计算向量中元素的和

为了通过求和所有行元素来降维,可以在调用函数时制定axis=0

也可以指定axis=1将通过汇总所有列的元素降维

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和

计算任意形状张量的平均值

五、非降维求和

如果我们想沿某个轴计算A元素的累积总和, 比如axis=0(按行计算),可以调用cumsum函数。 此函数不会沿任何轴降低输入张量的维度。

六、点积

七、矩阵-向量积

八、矩阵-矩阵乘法

九、范数


相关推荐
HyperAI超神经30 分钟前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
im_AMBER35 分钟前
Leetcode 99 删除排序链表中的重复元素 | 合并两个链表
数据结构·笔记·学习·算法·leetcode·链表
创作者mateo36 分钟前
PyTorch 入门笔记配套【完整练习代码】
人工智能·pytorch·笔记
米汤爱学习1 小时前
stable-diffusion-webui【笔记】
笔记·stable diffusion
碎碎思1 小时前
在 FPGA 上实现并行脉冲神经网络(Spiking Neural Net)
人工智能·深度学习·神经网络·机器学习·fpga开发
Terrence Shen1 小时前
【CUDA编程系列】之01
c++·人工智能·深度学习·机器学习
AI即插即用1 小时前
超分辨率重建 | CVPR 2024 DarkIR:轻量级低光照图像增强与去模糊模型(代码实践)
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
创作者mateo1 小时前
PyTorch 入门学习笔记(基础篇)一
pytorch·笔记·学习
OpenBayes1 小时前
HY-MT1.5-1.8B 支持多语言神经机器翻译;Med-Banana-50K 提供医学影像编辑基准数据
人工智能·深度学习·自然语言处理·数据集·机器翻译·图像生成
hkNaruto2 小时前
【AI】AI学习笔记:关于嵌入模型的切片大小,实际的业务系统中如何选择
人工智能·笔记·学习