李沐深度学习记录4:12.权重衰减/L2正则化

权重衰减从零开始实现

python 复制代码
#高维线性回归
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l

#整个流程是,1.生成标准数据集,包括训练数据和测试数据
#          2.定义线性模型训练
#           模型初始化(函数)、包含惩罚项的损失(函数)
#           定义epochs进行训练,每训练5轮评估一次模型在训练集和测试集的损失,画图显示
#           训练结束后分别查看并比较是否添加范数惩罚项损失对应的训练结果w的L2范数
#生成数据集
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5  #训练数据样本数20,测试样本数100,数据维度200,批量大小5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05  #生成w矩阵(200,1),w值0.01,偏置b为0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train) #生成训练数据集X(20,200),y(20,1),y=Xw+b+噪声,train_data接收返回的X,y
train_iter = d2l.load_array(train_data, batch_size)  #传入数据集和批量大小,构造训练数据迭代器
test_data = d2l.synthetic_data(true_w, true_b, n_test) #生成测试数据集
test_iter = d2l.load_array(test_data, batch_size, is_train=False)  #构造测试数据迭代器

#初始化模型参数
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]

#定义L2范数惩罚项
def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2  #L2范数公式需要开平方根,但这里L2范数惩罚项是L2范数的平方,所以不需要开平方根了

#训练代码
def train(lambd):  #输入λ超参数
    w, b = init_params()  #初始化模型参数
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss  #net线性模型torch.matmul(X, w) + b;loss是均方误差
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):  #进行多次迭代训练
        for X, y in train_iter:  #每个epoch,取训练数据
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)  #loss计算加上了λ×范数惩罚项
            l.sum().backward()  #这里计算损失和,下面参数更新时会对梯度求平均再更新参数
            d2l.sgd([w, b], lr, batch_size)  #进行参数更新操作
        if (epoch + 1) % 5 == 0:  #每5次epoch训练,评估一次模型的训练损失和测试损失
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())  #训练结束后,计算w的L2范数(没有平方)
python 复制代码
#λ为0,无正则化项,训练
train(lambd=0)
d2l.plt.show()
python 复制代码
#λ为10,有正则化项,训练
train(lambd=5)
d2l.plt.show()

权重衰减的简洁实现

python 复制代码
#权重衰减的简洁实现
def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))   #定义模型
    for param in net.parameters():   #初始化参数
        param.data.normal_()
    loss = nn.MSELoss(reduction='none')  #计算loss,这里不包含正则项
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减
    #在参数优化部分,计算梯度时加入了权重衰减
    #所以是计算loss时没计算正则项,只是在计算梯度时加入了权重衰减吗?
    trainer = torch.optim.SGD([
        {"params":net[0].weight,'weight_decay': wd},
        {"params":net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):   #训练100轮
        for X, y in train_iter:  #对于每轮,取数据训练
            trainer.zero_grad()   #梯度清零
            l = loss(net(X), y)  #计算loss
            l.mean().backward() #反向传播
            trainer.step()  #更新梯度
        if (epoch + 1) % 5 == 0:   #每5轮评估一次模型在测试集和训练集的损失
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
python 复制代码
#没有进行权重衰减
train_concise(0)
python 复制代码
#进行权重衰减
train_concise(5)
相关推荐
北京搜维尔科技有限公司13 分钟前
搜维尔科技:【应用】Xsens在荷兰车辆管理局人体工程学评估中的应用
人工智能·安全
说私域17 分钟前
基于开源 AI 智能名片 S2B2C 商城小程序的视频号交易小程序优化研究
人工智能·小程序·零售
YRr YRr17 分钟前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
知来者逆22 分钟前
研究大语言模型在心理保健智能顾问的有效性和挑战
人工智能·神经网络·机器学习·语言模型·自然语言处理
Shy96041826 分钟前
Bert完形填空
python·深度学习·bert
云起无垠31 分钟前
技术分享 | 大语言模型赋能软件测试:开启智能软件安全新时代
人工智能·安全·语言模型
老艾的AI世界44 分钟前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
翔云API1 小时前
PHP静默活体识别API接口应用场景与集成方案
人工智能
浊酒南街1 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境2 小时前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip