代码随想录算法训练营第五十九天 | 动态规划 part 17 | 647. 回文子串、516.最长回文子序列

目录

647. 回文子串

Leetcode

思路

  1. dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
  2. 递推公式
    • s[i]与s[j]不相等
      • 那没啥好说的了,dp[i][j]一定是false。
    • s[i]与s[j]相等时
      • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
      • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
      • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
  3. 初始化:全部为false
  4. 遍历顺序,因为递推公式需要用到dp[i + 1][j - 1],在dp[i][j]的左下角。所以遍历顺序需要从下往上,从左到右
  5. 举例推导dp: 输入:"aaa",dp[i][j]状态如下:

思路2 双指针

通过遍历每个回文中心,向两边扩散,并判断是否回文字串。在遍历中心点的时候,要注意中心点有两种情况。一个元素可以作为中心点,两个元素也可以作为中心点。

代码

dp

python 复制代码
class Solution:
    def countSubstrings(self, s: str) -> int:
        dp = [[False] * len(s) for _ in range(len(s))]
        res = 0
        for i in range(len(s) - 1, -1, -1):
            for j in range(i, len(s)):
                if s[i] == s[j]:
                    if j - i <= 1: # 情况1 和 情况2
                        dp[i][j] = True
                        res += 1
                    elif dp[i + 1][j - 1]: # 情况3
                        dp[i][j] = True
                        res += 1
        return res
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

双指针

python 复制代码
class Solution:
    def countSubstrings(self, s: str) -> int:
        res = 0
        for i in range(len(s)):
            l, r = i, i

            # odd case
            while l >= 0 and r < len(s) and s[l] == s[r]:
                res += 1
                l -= 1
                r += 1
            
            # even case
            l, r = i, i+1
            while l >= 0 and r < len(s) and s[r] == s[l]:
                res += 1 
                l -= 1
                r += 1
        
        return res
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

516.最长回文子序列

Leetcode

思路

  1. dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。

  2. 递推公式:

    • s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2
    • s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。
      • 加入s[j]的回文子序列长度为dp[i + 1][j]
      • 加入s[i]的回文子序列长度为dp[i][j - 1]
      • 那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
  3. 初始化:其他为0,dp[i][i] = 1

  4. 遍历顺序:从下到上,从左到右

  5. 举例推导:输入s:"cbbd" 为例,dp数组状态如图:

代码

python 复制代码
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0] * len(s) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1
        
        for i in range(len(s) - 1, -1, -1):
            for j in range(i + 1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i + 1][j - 1] + 2
                else:
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])

        return dp[0][-1]
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)
相关推荐
数据小爬虫@2 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python
健胃消食片片片片2 小时前
Python爬虫技术:高效数据收集与深度挖掘
开发语言·爬虫·python
王老师青少年编程3 小时前
gesp(C++五级)(14)洛谷:B4071:[GESP202412 五级] 武器强化
开发语言·c++·算法·gesp·csp·信奥赛
DogDaoDao3 小时前
leetcode 面试经典 150 题:有效的括号
c++·算法·leetcode·面试··stack·有效的括号
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
可为测控5 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨5 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
ℳ₯㎕ddzོꦿ࿐5 小时前
解决Python 在 Flask 开发模式下定时任务启动两次的问题
开发语言·python·flask
CodeClimb5 小时前
【华为OD-E卷 - 第k个排列 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python