机器学习7:pytorch的逻辑回归

一、说明

逻辑回归模型是处理分类问题的最常见机器学习模型之一。二项式逻辑回归只是逻辑回归模型的一种类型。它指的是两个变量的分类,其中概率用于确定二元结果,因此"二项式"中的"bi"。结果为真或假 --- 0 或 1。

二项式逻辑回归的一个例子是预测人群中 COVID-19 的可能性。一个人要么感染了COVID-19,要么没有,必须建立一个阈值以尽可能准确地区分这些结果。

二、sigmoid函数

这些预测不适合一条线,就像线性回归模型一样。相反,逻辑回归模型拟合到右侧所示的 sigmoid 函数。

对于每个 x ,生成的 y 值表示结果为 True 的概率。在 COVID-19 示例中,这表示医生对某人感染病毒的信心。在右图中,阴性结果为蓝色,阳性结果为红色。

图片来源:作者

三、过程

要进行二项式逻辑回归,我们需要做各种事情:

  1. 创建训练数据集。
  2. 使用 PyTorch 创建我们的模型。
  3. 将我们的数据拟合到模型中。

逻辑回归问题的第一步是创建训练数据集。首先,我们应该设置一个种子来确保我们的随机数据的可重复性。

ba 复制代码
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.nn import Linear

torch.manual_seed(42)   # set a random seed

我们必须使用 PyTorch 的线性模型,因为我们正在处理一个输入 x 和一个输出 y 。因此,我们的模型是线性的。为此,我们将使用 PyTorch 的函数:Linear

ba 复制代码
model = Linear(in_features=1, out_features=1) # use a linear model

接下来,我们必须生成蓝色 X 和红色 X 数据,确保将它们从行向量重塑为列向量。蓝色的在 0 到 7 之间,红色的在 7 到 10 之间。对于 y 值,蓝点表示 COVID-19 测试阴性,因此它们都将是

  1. 对于红点,它们代表 COVID-19 测试呈阳性,因此它们将为 1。下面是代码及其输出:
ba 复制代码
blue_x = (torch.rand(20) * 7).reshape(-1,1)   # random floats between 0 and 7
blue_y = torch.zeros(20).reshape(-1,1)

red_x = (torch.rand(20) * 7+3).reshape(-1,1)  # random floats between 3 and 10
red_y = torch.ones(20).reshape(-1,1)

X = torch.vstack([blue_x, red_x])   # matrix of x values
Y = torch.vstack([blue_y, red_y])   # matrix of y values

现在,我们的代码应如下所示:

ba 复制代码
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.nn import Linear

torch.manual_seed(42)   # set a random seed

model = Linear(in_features=1, out_features=1) # use a linear model

blue_x = (torch.rand(20) * 7).reshape(-1,1)   # random floats between 0 and 7
blue_y = torch.zeros(20).reshape(-1,1)

red_x = (torch.rand(20) * 7+3).reshape(-1,1)  # random floats between 3 and 10
red_y = torch.ones(20).reshape(-1,1)

X = torch.vstack([blue_x, red_x])   # matrix of x values
Y = torch.vstack([blue_y, red_y])   # matrix of y values

四、优化

我们将使用梯度下降过程来优化 S 形函数的损失。损失是根据函数拟合数据的优度计算的,数据由 S 形曲线的斜率和截距控制。我们需要梯度下降来找到最佳斜率和截距。

我们还将使用二进制交叉熵(BCE)作为我们的损失函数,或对数损失函数。对于一般的逻辑回归,不包含对数的损失函数将不起作用。

为了实现BCE作为我们的损失函数,我们将它设置为我们的标准,并将随机梯度下降作为我们优化它的手段。由于这是我们将要优化的函数,我们需要传入模型参数和学习率。

ba 复制代码
epochs = 2000   # run 2000 iterations
criterion = nn.BCELoss()    # implement binary cross entropy loss function

optimizer = torch.optim.SGD(model.parameters(), lr = .1) # stochastic gradient descent

现在,我们准备开始梯度下降以优化我们的损失。我们必须将梯度归零,通过将我们的数据插入 sigmoid 函数来找到 y-hat值,计算损失,并找到损失函数的梯度。然后,我们必须迈出一步,确保存储我们的新斜率并为下一次迭代进行拦截。

ba 复制代码
optimizer.zero_grad()
Yhat = torch.sigmoid(model(X)) 
loss = criterion(Yhat,Y)
loss.backward()
optimizer.step() 

五、收尾

为了找到最佳斜率和截距,我们本质上是在训练我们的模型。我们必须对多次迭代或纪元应用梯度下降。在此示例中,我们将使用 2,000 个纪元进行演示。

ba 复制代码
epochs = 2000   # run 2000 iterations
criterion = nn.BCELoss()    # implement binary cross entropy loss function

optimizer = torch.optim.SGD(model.parameters(), lr = .1) # stochastic gradient descent

for i in range(epochs):
    optimizer.zero_grad()
    Yhat = torch.sigmoid(model(X))
    loss = criterion(Yhat,Y)
    loss.backward()
    optimizer.step()

    print(f"epoch: {i+1}")
    print(f"loss: {loss: .5f}")
    print(f"slope: {model.weight.item(): .5f}")
    print(f"intercept: {model.bias.item(): .5f}")
    print()

将所有代码片段放在一起,我们应该得到以下代码:

ba 复制代码
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.nn import Linear

torch.manual_seed(42)   # set a random seed

model = Linear(in_features=1, out_features=1) # use a linear model

blue_x = (torch.rand(20) * 7).reshape(-1,1)   # random floats between 0 and 7
blue_y = torch.zeros(20).reshape(-1,1)

red_x = (torch.rand(20) * 7+3).reshape(-1,1)  # random floats between 3 and 10
red_y = torch.ones(20).reshape(-1,1)

X = torch.vstack([blue_x, red_x])   # matrix of x values
Y = torch.vstack([blue_y, red_y])   # matrix of y values

epochs = 2000   # run 2000 iterations
criterion = nn.BCELoss()    # implement binary cross entropy loss function

optimizer = torch.optim.SGD(model.parameters(), lr = .1) # stochastic gradient descent

for i in range(epochs):
    optimizer.zero_grad()
    Yhat = torch.sigmoid(model(X))
    loss = criterion(Yhat,Y)
    loss.backward()
    optimizer.step()

    print(f"epoch: {i+1}")
    print(f"loss: {loss: .5f}")
    print(f"slope: {model.weight.item(): .5f}")
    print(f"intercept: {model.bias.item(): .5f}")
    print()
两千个时期后的最终输出:

epoch: 2000
loss:  0.53861
slope:  0.61276
intercept: -3.17314

两千个时期后的最终输出:

ba 复制代码
epoch: 2000
loss:  0.53861
slope:  0.61276
intercept: -3.17314 

六、可视化

最后,我们可以将数据与 sigmoid 函数一起绘制,以获得以下可视化效果:

ba 复制代码
x = np.arange(0,10,.1)
y = model.weight.item()*x + model.bias.item()

plt.plot(x, 1/(1 + np.exp(-y)), color="green")

plt.xlim(0,10)
plt.scatter(blue_x, blue_y, color="blue")
plt.scatter(red_x, red_y, color="red")

plt.show()

图片来源:作者

七、局限性

二元分类的最大问题之一是需要阈值。在逻辑回归的情况下,此阈值应为 x 值,其中 y 为 50%。我们试图回答的问题是将阈值放在哪里?

在 COVID-19 测试的情况下,原始示例说明了这种困境。如果我们将阈值设置为 x=5,我们可以清楚地看到应该是红色的蓝点和应该是蓝色的红点。

悬垂的红点称为误报 ,即模型错误地预测正类的区域。悬垂的蓝点称为假阴性 - 模型错误地预测负类的区域。

八、结论

成功的二项式逻辑回归模型将减少假阴性的数量,因为这些假阴性通常会导致最大的危险。患有COVID-19但检测呈阴性对他人的健康和安全构成严重风险。

通过对可用数据使用二项式逻辑回归,我们可以确定放置阈值的最佳位置,从而有助于减少不确定性并做出更明智的决策。

相关推荐
许泽宇的技术分享20 小时前
AgentFramework-零基础入门-第08章_部署和监控代理
人工智能·后端·agent框架·agentframework
数据与后端架构提升之路20 小时前
Map-World:用“填空”与“路径积分”重构自动驾驶规划范式
人工智能·自动驾驶·世界模型·锚点预测
陈天伟教授21 小时前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
青瓷程序设计21 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
IT_陈寒21 小时前
Python开发者必看:5个被低估但能提升200%编码效率的冷门库实战
前端·人工智能·后端
徽44021 小时前
农田植被目标检测数据标注与模型训练总结1
人工智能·目标检测·计算机视觉
千里念行客24021 小时前
国产射频芯片“小巨人”昂瑞微今日招股 拟于12月5日进行申购
大数据·前端·人工智能·科技
余蓝21 小时前
本地部署!文生图LCM超简单教程
图像处理·人工智能·深度学习·ai作画·stable diffusion·dall·e 2
千里念行客24021 小时前
昂瑞微将于12月2日初步询价 助推国产射频芯片自主创新
人工智能·科技·社交电子·api·电子
l***74941 天前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源