论文阅读——Large Selective Kernel Network for Remote Sensing Object Detection

目录

基本信息

期刊 CVPR
年份 2023
论文地址 https://arxiv.org/pdf/2303.09030.pdf
代码地址 https://github.com/zcablii/LSKNet

标题

遥感目标检测的大选择核网络

目前存在的问题

相对较少的工作考虑到强大的先验知识存在于遥感图像。航空图像通常是用高分辨率的鸟瞰图拍摄的。特别是,航拍图像中的大多数物体可能体积较小,仅从它们的外观很难识别。相反,这些物体的成功识别往往依赖于它们的上下文,因为周围的环境可以提供关于它们的形状、方向和其他特征的有价值的线索。

  1. 遥感图像中目标的精确检测往往需要广泛的上下文信息。
  2. 不同对象类型所需的上下文信息的范围是非常不同的。

改进

大核卷积

卷积核大小和膨大率的增加保证了感受野的快速扩展。我们设置了膨胀率的上界,以保证膨胀卷积不会在特征图之间引入间隙。例如,我们可以将一个大的内核分解为2或3个深度卷积,如表2所示,它们的理论感受野分别为23和29。

优点:

  1. 它显式地生成多个具有各种大型接受域的特性,这使得以后的内核选择更加容易。
  2. 顺序分解比简单地应用单个更大的内核更有效。我们的分解比标准的大卷积核大大减少了参数的数量

空间核选择

在不同尺度上从大卷积核中空间选择特征映射

首先,我们将不同感受野范围的不同核的特征进行串联,然后采用基于通道的平均和最大池化方法有效地提取空间关系,将空间融合的特征进行串联,并使用卷积层将融合的特征(2通道)转换为N个空间注意图,对于每个空间注意图̂SAi,使用一个sigmoid激活函数,对分解后的每个大核分别获得单个空间选择掩码,将分解后的大核序列中的特征按其对应的空间选择掩模加权,再经卷积层融合得到注意特征S

网络结构


另一个写的好的参考

网址

相关推荐
吴佳浩4 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
陈嘿萌4 小时前
图像融合任务在目标检测中的性能评估与深度思考
目标检测·yolov8·图像融合·深度思考·代码实现
tap.AI4 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维5 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术5 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20235 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud5 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云5 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都5 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间5 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉