论文阅读——Large Selective Kernel Network for Remote Sensing Object Detection

目录

基本信息

期刊 CVPR
年份 2023
论文地址 https://arxiv.org/pdf/2303.09030.pdf
代码地址 https://github.com/zcablii/LSKNet

标题

遥感目标检测的大选择核网络

目前存在的问题

相对较少的工作考虑到强大的先验知识存在于遥感图像。航空图像通常是用高分辨率的鸟瞰图拍摄的。特别是,航拍图像中的大多数物体可能体积较小,仅从它们的外观很难识别。相反,这些物体的成功识别往往依赖于它们的上下文,因为周围的环境可以提供关于它们的形状、方向和其他特征的有价值的线索。

  1. 遥感图像中目标的精确检测往往需要广泛的上下文信息。
  2. 不同对象类型所需的上下文信息的范围是非常不同的。

改进

大核卷积

卷积核大小和膨大率的增加保证了感受野的快速扩展。我们设置了膨胀率的上界,以保证膨胀卷积不会在特征图之间引入间隙。例如,我们可以将一个大的内核分解为2或3个深度卷积,如表2所示,它们的理论感受野分别为23和29。

优点:

  1. 它显式地生成多个具有各种大型接受域的特性,这使得以后的内核选择更加容易。
  2. 顺序分解比简单地应用单个更大的内核更有效。我们的分解比标准的大卷积核大大减少了参数的数量

空间核选择

在不同尺度上从大卷积核中空间选择特征映射

首先,我们将不同感受野范围的不同核的特征进行串联,然后采用基于通道的平均和最大池化方法有效地提取空间关系,将空间融合的特征进行串联,并使用卷积层将融合的特征(2通道)转换为N个空间注意图,对于每个空间注意图̂SAi,使用一个sigmoid激活函数,对分解后的每个大核分别获得单个空间选择掩码,将分解后的大核序列中的特征按其对应的空间选择掩模加权,再经卷积层融合得到注意特征S

网络结构


另一个写的好的参考

网址

相关推荐
SHIPKING39337 分钟前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水5 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室6 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿6 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记6 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术7 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端