c++视觉图像线性混合

图像线性混合

使用 cv::addWeighted() 函数对两幅图像进行线性混合。alpha 和 beta 是两幅图像的权重,它们之和应该等于1。gamma 是一个可选的增益,这里设置为0。

你可以通过调整 alpha 的值来改变混合比例。如果 alpha=0.5,则两幅图像等权重混合,如果 alpha=0.7,则第一幅图像的权重更大。

图像线性混合(Image Blending)通常是通过权重对两幅图像进行加权相加的操作,产生一幅新的图像。这是一个简单的线性混合的示例:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
	// 读取两幅图像
	cv::Mat image1 = cv::imread("11.png");
	cv::Mat image2 = cv::imread("22.png");

	// 检查图像是否成功加载
	if (image1.empty() || image2.empty()) {
		std::cerr << "Error: Could not read the image(s)." << std::endl;
		return -1;
	}

	// 确保两幅图像大小相同
	if (image1.size() != image2.size()) {
		std::cerr << "Error: Image sizes do not match." << std::endl;
		return -1;
	}

	// 定义混合权重
	double alpha = 0.5;  // 第一幅图像的权重
	double beta = 1.0 - alpha;  // 第二幅图像的权重

	// 进行线性混合
	cv::Mat blendedImage;
	cv::addWeighted(image1, alpha, image2, beta, 0.0, blendedImage);

	// 显示原始图像和混合后的图像
	cv::imshow("Image 1", image1);
	cv::imshow("Image 2", image2);
	cv::imshow("Blended Image", blendedImage);

	// 等待按键
	cv::waitKey(0);

	return 0;
}

设置感兴趣区域再矩形线形混合

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取两幅图像
    cv::Mat image1 = cv::imread("11.png");
    cv::Mat image2 = cv::imread("22.png");

    // 检查图像是否成功加载
    if (image1.empty() || image2.empty()) {
        std::cerr << "Error: Could not read the image(s)." << std::endl;
        return -1;
    }

    // 确保两幅图像大小相同
    if (image1.size() != image2.size()) {
        std::cerr << "Error: Image sizes do not match." << std::endl;
        return -1;
    }

    // 定义感兴趣区域的矩形
    cv::Rect roiRect(100, 50, 150, 100);

    // 定义不同区域的权重
    double alpha1 = 0.8;  // 第一幅图像的权重
    double beta1 = 1.0 - alpha1;  // 第二幅图像的权重

    double alpha2 = 0.3;  // 第一幅图像的权重
    double beta2 = 1.0 - alpha2;  // 第二幅图像的权重

    // 创建两个感兴趣区域
    cv::Mat roi1 = image1(roiRect);
    cv::Mat roi2 = image2(roiRect);

    // 进行线性混合
    cv::Mat blendedROI;
    cv::addWeighted(roi1, alpha1, roi2, beta1, 0.0, blendedROI);

    // 将混合后的ROI放回原图像
    blendedROI.copyTo(image1(roiRect));

    // 显示原始图像和混合后的图像
    cv::imshow("Image 1", image1);
    cv::imshow("Image 2", image2);

    // 等待按键
    cv::waitKey(0);

    return 0;
}
相关推荐
韩曙亮12 分钟前
【AI 大模型】LangChain 框架 ① ( LangChain 简介 | LangChain 模块 | LangChain 文档 )
人工智能·ai·langchain·llm·大语言模型·prompts·agents
码农阿豪14 分钟前
本地 AI 模型随心用!Cherry Studio + cpolar解锁跨设备智能办公
人工智能
通义灵码23 分钟前
用 Qoder 加速前端巨石应用的架构演进
前端·人工智能·架构·qoder
一水鉴天27 分钟前
整体设计 定稿 之21 拼语言表述体系之3 dashboard.html V5(codebuddy)
前端·人工智能·架构
LaughingZhu43 分钟前
Product Hunt 每日热榜 | 2025-12-01
大数据·人工智能·经验分享·搜索引擎·产品运营
m0_462605221 小时前
第N8周:使用Word2vec实现文本分类
人工智能·分类·word2vec
子洋1 小时前
LLM 原理 - 输入预处理
前端·人工智能·后端
我很哇塞耶1 小时前
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
人工智能·ai·大模型·训练
小白狮ww1 小时前
lammps 教程:npt 控温估计 FCC Cu 熔点
人工智能·深度学习·机器学习·分子动力学·lammps·npt·材料建模
TOYOAUTOMATON1 小时前
自动化工业夹爪
大数据·人工智能·算法·目标检测·机器人