c++视觉图像线性混合

图像线性混合

使用 cv::addWeighted() 函数对两幅图像进行线性混合。alpha 和 beta 是两幅图像的权重,它们之和应该等于1。gamma 是一个可选的增益,这里设置为0。

你可以通过调整 alpha 的值来改变混合比例。如果 alpha=0.5,则两幅图像等权重混合,如果 alpha=0.7,则第一幅图像的权重更大。

图像线性混合(Image Blending)通常是通过权重对两幅图像进行加权相加的操作,产生一幅新的图像。这是一个简单的线性混合的示例:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
	// 读取两幅图像
	cv::Mat image1 = cv::imread("11.png");
	cv::Mat image2 = cv::imread("22.png");

	// 检查图像是否成功加载
	if (image1.empty() || image2.empty()) {
		std::cerr << "Error: Could not read the image(s)." << std::endl;
		return -1;
	}

	// 确保两幅图像大小相同
	if (image1.size() != image2.size()) {
		std::cerr << "Error: Image sizes do not match." << std::endl;
		return -1;
	}

	// 定义混合权重
	double alpha = 0.5;  // 第一幅图像的权重
	double beta = 1.0 - alpha;  // 第二幅图像的权重

	// 进行线性混合
	cv::Mat blendedImage;
	cv::addWeighted(image1, alpha, image2, beta, 0.0, blendedImage);

	// 显示原始图像和混合后的图像
	cv::imshow("Image 1", image1);
	cv::imshow("Image 2", image2);
	cv::imshow("Blended Image", blendedImage);

	// 等待按键
	cv::waitKey(0);

	return 0;
}

设置感兴趣区域再矩形线形混合

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取两幅图像
    cv::Mat image1 = cv::imread("11.png");
    cv::Mat image2 = cv::imread("22.png");

    // 检查图像是否成功加载
    if (image1.empty() || image2.empty()) {
        std::cerr << "Error: Could not read the image(s)." << std::endl;
        return -1;
    }

    // 确保两幅图像大小相同
    if (image1.size() != image2.size()) {
        std::cerr << "Error: Image sizes do not match." << std::endl;
        return -1;
    }

    // 定义感兴趣区域的矩形
    cv::Rect roiRect(100, 50, 150, 100);

    // 定义不同区域的权重
    double alpha1 = 0.8;  // 第一幅图像的权重
    double beta1 = 1.0 - alpha1;  // 第二幅图像的权重

    double alpha2 = 0.3;  // 第一幅图像的权重
    double beta2 = 1.0 - alpha2;  // 第二幅图像的权重

    // 创建两个感兴趣区域
    cv::Mat roi1 = image1(roiRect);
    cv::Mat roi2 = image2(roiRect);

    // 进行线性混合
    cv::Mat blendedROI;
    cv::addWeighted(roi1, alpha1, roi2, beta1, 0.0, blendedROI);

    // 将混合后的ROI放回原图像
    blendedROI.copyTo(image1(roiRect));

    // 显示原始图像和混合后的图像
    cv::imshow("Image 1", image1);
    cv::imshow("Image 2", image2);

    // 等待按键
    cv::waitKey(0);

    return 0;
}
相关推荐
操练起来6 分钟前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型22 分钟前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网26 分钟前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp27 分钟前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***484135 分钟前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元38 分钟前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛2 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
Learn Beyond Limits2 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
shmexon2 小时前
上海兆越亮相无锡新能源盛会,以硬核通信科技赋能“能碳未来”
网络·人工智能
ziwu2 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别