c++视觉图像线性混合

图像线性混合

使用 cv::addWeighted() 函数对两幅图像进行线性混合。alpha 和 beta 是两幅图像的权重,它们之和应该等于1。gamma 是一个可选的增益,这里设置为0。

你可以通过调整 alpha 的值来改变混合比例。如果 alpha=0.5,则两幅图像等权重混合,如果 alpha=0.7,则第一幅图像的权重更大。

图像线性混合(Image Blending)通常是通过权重对两幅图像进行加权相加的操作,产生一幅新的图像。这是一个简单的线性混合的示例:

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
	// 读取两幅图像
	cv::Mat image1 = cv::imread("11.png");
	cv::Mat image2 = cv::imread("22.png");

	// 检查图像是否成功加载
	if (image1.empty() || image2.empty()) {
		std::cerr << "Error: Could not read the image(s)." << std::endl;
		return -1;
	}

	// 确保两幅图像大小相同
	if (image1.size() != image2.size()) {
		std::cerr << "Error: Image sizes do not match." << std::endl;
		return -1;
	}

	// 定义混合权重
	double alpha = 0.5;  // 第一幅图像的权重
	double beta = 1.0 - alpha;  // 第二幅图像的权重

	// 进行线性混合
	cv::Mat blendedImage;
	cv::addWeighted(image1, alpha, image2, beta, 0.0, blendedImage);

	// 显示原始图像和混合后的图像
	cv::imshow("Image 1", image1);
	cv::imshow("Image 2", image2);
	cv::imshow("Blended Image", blendedImage);

	// 等待按键
	cv::waitKey(0);

	return 0;
}

设置感兴趣区域再矩形线形混合

cpp 复制代码
#include <opencv2/opencv.hpp>

int main() {
    // 读取两幅图像
    cv::Mat image1 = cv::imread("11.png");
    cv::Mat image2 = cv::imread("22.png");

    // 检查图像是否成功加载
    if (image1.empty() || image2.empty()) {
        std::cerr << "Error: Could not read the image(s)." << std::endl;
        return -1;
    }

    // 确保两幅图像大小相同
    if (image1.size() != image2.size()) {
        std::cerr << "Error: Image sizes do not match." << std::endl;
        return -1;
    }

    // 定义感兴趣区域的矩形
    cv::Rect roiRect(100, 50, 150, 100);

    // 定义不同区域的权重
    double alpha1 = 0.8;  // 第一幅图像的权重
    double beta1 = 1.0 - alpha1;  // 第二幅图像的权重

    double alpha2 = 0.3;  // 第一幅图像的权重
    double beta2 = 1.0 - alpha2;  // 第二幅图像的权重

    // 创建两个感兴趣区域
    cv::Mat roi1 = image1(roiRect);
    cv::Mat roi2 = image2(roiRect);

    // 进行线性混合
    cv::Mat blendedROI;
    cv::addWeighted(roi1, alpha1, roi2, beta1, 0.0, blendedROI);

    // 将混合后的ROI放回原图像
    blendedROI.copyTo(image1(roiRect));

    // 显示原始图像和混合后的图像
    cv::imshow("Image 1", image1);
    cv::imshow("Image 2", image2);

    // 等待按键
    cv::waitKey(0);

    return 0;
}
相关推荐
果粒橙_LGC25 分钟前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
雷达学弱狗39 分钟前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
Seeklike41 分钟前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
CoovallyAIHub1 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
杨过过儿1 小时前
【Task01】:简介与环境配置(第一章1、2节)
人工智能·自然语言处理
小妖同学学AI1 小时前
deepseek一键生成word和excel并一键下载
人工智能·word·excel·deepseek
黎燃1 小时前
AI助力垃圾分类与回收的可行性研究:从算法到落地的深度解析
人工智能
强盛小灵通专卖员1 小时前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
Hello123网站1 小时前
多墨智能-AI一键生成工作文档/流程图/思维导图
人工智能·流程图·ai工具
才思喷涌的小书虫1 小时前
小白玩转 DINO-X MCP(2):基于 DINO-X MCP 搭建饮食规划工作流
计算机视觉·mcp