如何理解pytorch中的“with torch.no_grad()”?

torch.no_grad()方法就像一个循环,其中循环中的每个张量都将requires_grad设置为False。这意味着,当前与当前计算图相连的具有梯度的张量现在与当前图分离了我们将不再能够计算关于该张量的梯度。直到张量在循环内,它才与当前图分离。一旦用梯度定义的张量脱离了循环,它就会再次附着到当前图上。此方法禁用梯度计算,从而减少计算的内存消耗。

**示例:**在这个例子中,我们将用requires_grad=true定义一个张量a,然后我们将使用张量a在torch.no_grad()中定义一个函数B。现在张量a在循环中,所以requires_grad被设置为false。

复制代码
# Python3
# import necessary libraries 
import torch 
  
# define a tensor 
A = torch.tensor(1., requires_grad=True) 
print("Tensor-A:", A) 
  
# define a function using A tensor  
# inside loop 
with torch.no_grad(): 
    B = A + 1
print("B:-", B) 
  
# check gradient 
print("B.requires_grad=", B.requires_grad)

OUTPUT

复制代码
Tensor-A: tensor(1., requires_grad=True)
B:- tensor(2.)
B.requires_grad= False
相关推荐
L.fountain几秒前
机器学习shap分析案例
人工智能·机器学习
weixin_429630263 分钟前
机器学习-第一章
人工智能·机器学习
Cedric11133 分钟前
机器学习中的距离总结
人工智能·机器学习
大模型真好玩8 分钟前
深入浅出LangGraph AI Agent智能体开发教程(五)—LangGraph 数据分析助手智能体项目实战
人工智能·python·mcp
测试老哥13 分钟前
Selenium 使用指南
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
IT_陈寒21 分钟前
React性能优化:这5个Hook技巧让我的组件渲染效率提升50%(附代码对比)
前端·人工智能·后端
Captaincc23 分钟前
9 月 20 日,TRAE Meetup@Guangzhou 相聚羊城
人工智能·后端
霍格沃兹软件测试开发38 分钟前
快速掌握Dify+Chrome MCP:打造网页操控AI助手
人工智能·chrome·dify·mcp
百锦再39 分钟前
[特殊字符] Python在CentOS系统执行深度指南
开发语言·python·plotly·django·centos·virtualenv·pygame
张子夜 iiii1 小时前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉