如何理解pytorch中的“with torch.no_grad()”?

torch.no_grad()方法就像一个循环,其中循环中的每个张量都将requires_grad设置为False。这意味着,当前与当前计算图相连的具有梯度的张量现在与当前图分离了我们将不再能够计算关于该张量的梯度。直到张量在循环内,它才与当前图分离。一旦用梯度定义的张量脱离了循环,它就会再次附着到当前图上。此方法禁用梯度计算,从而减少计算的内存消耗。

**示例:**在这个例子中,我们将用requires_grad=true定义一个张量a,然后我们将使用张量a在torch.no_grad()中定义一个函数B。现在张量a在循环中,所以requires_grad被设置为false。

复制代码
# Python3
# import necessary libraries 
import torch 
  
# define a tensor 
A = torch.tensor(1., requires_grad=True) 
print("Tensor-A:", A) 
  
# define a function using A tensor  
# inside loop 
with torch.no_grad(): 
    B = A + 1
print("B:-", B) 
  
# check gradient 
print("B.requires_grad=", B.requires_grad)

OUTPUT

复制代码
Tensor-A: tensor(1., requires_grad=True)
B:- tensor(2.)
B.requires_grad= False
相关推荐
中冕—霍格沃兹软件开发测试6 分钟前
测试用例库建设与管理方案
数据库·人工智能·科技·开源·测试用例·bug
TextIn智能文档云平台12 分钟前
什么是多模态信息抽取,它和传统OCR有什么区别?
大数据·人工智能
番石榴AI14 分钟前
java版的ocr推荐引擎——JiaJiaOCR 2.0重磅升级!纯Java CPU推理,新增手写OCR与表格识别
java·python·ocr
Linux后台开发狮22 分钟前
DeepSeek-R1 技术剖析
人工智能·机器学习
拾荒的小海螺24 分钟前
开源项目:AI-Writer 小说 AI 生成器
人工智能
时光轻浅,半夏挽歌28 分钟前
python不同格式文件的读写方式(json等)
python·json
Xiaoxiaoxiao02091 小时前
情感 AI:让机器真正理解人的下一代智能——以 GAEA 为例的情绪计算探索
人工智能
测试人社区-千羽1 小时前
边缘计算场景下的智能测试挑战
人工智能·python·安全·开源·智能合约·边缘计算·分布式账本
抽象带篮子1 小时前
Pytorch Lightning 框架运行顺序
人工智能·pytorch·python
火云牌神1 小时前
本地大模型编程实战(38)实现一个通用的大模型客户端
人工智能·后端