如何理解pytorch中的“with torch.no_grad()”?

torch.no_grad()方法就像一个循环,其中循环中的每个张量都将requires_grad设置为False。这意味着,当前与当前计算图相连的具有梯度的张量现在与当前图分离了我们将不再能够计算关于该张量的梯度。直到张量在循环内,它才与当前图分离。一旦用梯度定义的张量脱离了循环,它就会再次附着到当前图上。此方法禁用梯度计算,从而减少计算的内存消耗。

**示例:**在这个例子中,我们将用requires_grad=true定义一个张量a,然后我们将使用张量a在torch.no_grad()中定义一个函数B。现在张量a在循环中,所以requires_grad被设置为false。

复制代码
# Python3
# import necessary libraries 
import torch 
  
# define a tensor 
A = torch.tensor(1., requires_grad=True) 
print("Tensor-A:", A) 
  
# define a function using A tensor  
# inside loop 
with torch.no_grad(): 
    B = A + 1
print("B:-", B) 
  
# check gradient 
print("B.requires_grad=", B.requires_grad)

OUTPUT

复制代码
Tensor-A: tensor(1., requires_grad=True)
B:- tensor(2.)
B.requires_grad= False
相关推荐
buttonupAI4 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876484 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
咖啡の猫5 小时前
Python字典推导式
开发语言·python
曹文杰15190301125 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
竣雄5 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把5 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL5 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
Wulida0099915 小时前
建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
python
呆萌很5 小时前
HSV颜色空间过滤
人工智能
FJW0208146 小时前
Python_work4
开发语言·python