如何理解pytorch中的“with torch.no_grad()”?

torch.no_grad()方法就像一个循环,其中循环中的每个张量都将requires_grad设置为False。这意味着,当前与当前计算图相连的具有梯度的张量现在与当前图分离了我们将不再能够计算关于该张量的梯度。直到张量在循环内,它才与当前图分离。一旦用梯度定义的张量脱离了循环,它就会再次附着到当前图上。此方法禁用梯度计算,从而减少计算的内存消耗。

**示例:**在这个例子中,我们将用requires_grad=true定义一个张量a,然后我们将使用张量a在torch.no_grad()中定义一个函数B。现在张量a在循环中,所以requires_grad被设置为false。

复制代码
# Python3
# import necessary libraries 
import torch 
  
# define a tensor 
A = torch.tensor(1., requires_grad=True) 
print("Tensor-A:", A) 
  
# define a function using A tensor  
# inside loop 
with torch.no_grad(): 
    B = A + 1
print("B:-", B) 
  
# check gradient 
print("B.requires_grad=", B.requires_grad)

OUTPUT

复制代码
Tensor-A: tensor(1., requires_grad=True)
B:- tensor(2.)
B.requires_grad= False
相关推荐
Elastic 中国社区官方博客11 分钟前
Elasticsearch:如何为 Elastic Stack 部署 E5 模型 - 下载及隔离环境
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
xier_ran11 分钟前
深度学习:神经网络中的参数和超参数
人工智能·深度学习
8Qi821 分钟前
伪装图像生成之——GAN与Diffusion
人工智能·深度学习·神经网络·生成对抗网络·图像生成·伪装图像生成
循环过三天39 分钟前
3.1、Python-列表
python·算法
青青草原羊村懒大王1 小时前
python基础知识三
开发语言·python
阿里云大数据AI技术1 小时前
PAI Physical AI Notebook详解2:基于Cosmos世界模型的操作动作数据扩增与模仿学习
人工智能
傻啦嘿哟1 小时前
Python高效实现Word转HTML:从基础到进阶的全流程方案
人工智能·python·tensorflow
该用户已不存在1 小时前
Gemini CLI 核心命令指南,让工作从从容容游刃有余
人工智能·程序员·aigc
思通数科多模态大模型1 小时前
扑灭斗殴的火苗:AI智能守护如何为校园安全保驾护航
大数据·人工智能·深度学习·安全·目标检测·计算机视觉·数据挖掘
wu_jing_sheng02 小时前
深度学习入门:揭开神经网络的神秘面纱(附PyTorch实战)
python