多目标优化两种算法:加权、智能优化算法

传统数学优化算法(加权)

使用数学优化算法解决多目标优化问题通常是将各个子目标聚合成一个带权重的单目标函数,系数由决策者决定,或者由优化方法自适应调整。即通过加权等方式****将多目标问题转化为单目标问题进行求解。

这样每次只能得到一种权值下的最优解。MOP的目标函数、约束函数可能是非线性、不连续的,无法满足数学优化问题的求解条件。传统的数学规划效率低,总的来说存在如下几个问题:

  1. 单目标权值难以确定;
  2. 各个目标之间量纲不统一,可能会造成单目标优化问题鲁棒性差;
  3. 单目标加权求和只能接近凸的帕累托面;
  4. 多目标优化问题的帕累托解集包含更多有效信息。

智能优化算法

主要分三个阶段发展。按照不同的选择机制可以进行如下分类:

  1. 基于Pareto支配关系:NSGA、NSGA II。该方法主要是通过对不同解进行非支配排序完成个体选择,同时使用适应度共享策略使Pareto Front上的个体分布均匀。相较于NSGA算法,NSGA II算法使用快速非支配排序算法保障收敛,引入拥挤距离算子保障Pareto解的分布性,同时使用了精英策略。
  2. 基于分解的方法:MOEA/D。该方法将MOP分解为多个子问题,这样就可以通过优化每个子问题来求解一个MOP。
  3. 基于Indicator:IBEA。该方法根据性能评价模型对个体进行fitness赋值。

进化计算(三)------多目标优化基本概念_多目标优化igd_南木长的博客-CSDN博客

相关推荐
千宇宙航1 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董1 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco1 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
森焱森2 小时前
水下航行器外形分类详解
c语言·单片机·算法·架构·无人机
QuantumStack4 小时前
【C++ 真题】P1104 生日
开发语言·c++·算法
jndingxin4 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
写个博客4 小时前
暑假算法日记第一天
算法
绿皮的猪猪侠4 小时前
算法笔记上机训练实战指南刷题
笔记·算法·pta·上机·浙大
hie988945 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab