Pytorch预备知识——数据操作

Pytorch预备知识------数据操作

原文链接: 数据操作 --- 动手学深度学习

本文主要对Pytorch中张量(tensor)的基本操作进行介绍,主要包括张量的一些运算和重要机制等,主要包括以下内容:

  • 基本介绍
  • 基本运算符
  • 广播机制
  • 切片与索引
  • 内存节省小tips

基本介绍

张量是pytorch中的最基本的数据类型,其与数组很类似,可以被看做为一个n维数组。使用张量,需要先导入torch包

import torch

张量和数组一样,可能有多个维度,其中每个维度对应一个轴。在张量的上下文中,维度 通常是指张量的秩(rank),也称为轴的数量。维度大小指的是某个轴上元素数量

具有一个轴的张量对应数学上的向量(vector),具有两个轴的张量对应数学上的矩阵(matrix)

张量打印出来类似于python中的列表[[...],[...],[...]] 张量有轴的概念,一个行向量只有一个轴0,一个二维张量有两个轴,分别为轴0和轴1 最外层的列表对应于轴0,内层的列表对应于轴1,依此类推 某个轴的长度即对应该轴对应列表中的元素个数

可以使用如下方法来创建一个张量

  • 使用x = torch.arange(n)创建一个行向量 x ,从0开始的具有n个元素的向量,默认为整数类型
python 复制代码
x = torch.arange(12)
x
python 复制代码
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
  • 实现特殊张量(包括全0,全1,其他常量等)。例如,一个全是0的形状为(2,3,4)的张量torch.zeros((2,3,4))
python 复制代码
# 全0向量
torch.zeros((2,3,4))
python 复制代码
tensor([[[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
python 复制代码
# 全1向量
torch.ones(2,3,4)
python 复制代码
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]])
  • 用shape属性来访问张量的形状(即沿每个轴的长度)
python 复制代码
x.shape
python 复制代码
torch.Size([12])
  • 用numel方法来查看一个张量的大小
python 复制代码
x.numel()
12
  • 用reshape函数来改变张量的形状(不改变张量元素的值和数量)
python 复制代码
# 例如,把张量x从形状为(12,)的行向量转换为形状为(3,4)的矩阵
X = x.reshape((3,4))
python 复制代码
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
python 复制代码
# 如果我们的目标形状是(高度,宽度)
# 那么在知道宽度or高度后,高度or宽度会被自动计算得出,不必我们自己做除法
X = x.reshape(-1,4)
X
python 复制代码
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
  • 利用某个特定分布来随机初始化张量
python 复制代码
# 例如,创建一个形状为(3,4)的张量
# 其中的每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样
torch.randn(3,4)
# 与torch.randn((3,4))等价
python 复制代码
tensor([[-1.3115, -0.4134,  0.4248, -0.8907],
        [-0.1838, -1.2467,  0.0754,  1.1034],
        [-1.0219, -0.5639, -0.3624, -0.2522]])
  • 用列表来初始化一个张量
python 复制代码
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
lua 复制代码
tensor([[2, 1, 4, 3],
        [1, 2, 3, 4],
        [4, 3, 2, 1]])

数学运算

对于张量来说,其中最简单且最有用的操作是按元素运算。

对于任意具有相同形状的张量常见的标准算术运算符(+、-、*、/和**)都可以被升级为按元素运算。

pyhton 复制代码
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y
pyhton 复制代码
(tensor([ 3.,  4.,  6., 10.]),
 tensor([-1.,  0.,  2.,  6.]),
 tensor([ 2.,  4.,  8., 16.]),
 tensor([0.5000, 1.0000, 2.0000, 4.0000]),
 tensor([ 1.,  4., 16., 64.]))
python 复制代码
torch.exp(x)
scss 复制代码
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
python 复制代码
# 将多个张量连结(堆叠)起来以形成一个更大的张量
# 只需要给出沿着那个轴连结即可
# 具体见下面例子,X和Y的形状都是(3,4)
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
# 按轴0连结 行
# [[],[],[]+[],[],[]]=>(3+3,4)=(6,4)
res = torch.cat((X,Y),dim=0)
print(res)
print(res.shape)
python 复制代码
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.],
        [ 2.,  1.,  4.,  3.],
        [ 1.,  2.,  3.,  4.],
        [ 4.,  3.,  2.,  1.]])
torch.Size([6, 4])

张量连结操作

python 复制代码
# 按轴1连结 列
# [[...+...],[...+...],[...+...]]=>(3,4+4)=(3,8)
res = torch.cat((X,Y),dim=1)
print(res)
print(res.shape)
lua 复制代码
tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],
        [ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],
        [ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]])
torch.Size([3, 8])

逻辑运算符

python 复制代码
# 有时,我们想通过逻辑运算符构建二元张量
# 以X == Y为例: 对于每个位置,如果X和Y在该位置相等,则新张量中相应项的值为1。 
# 这意味着逻辑语句X == Y在该位置处为真,否则该位置为0。
X==Y
pyhton 复制代码
tensor([[False,  True, False,  True],
        [False, False, False, False],
        [False, False, False, False]])

张量sum求和

pyhton 复制代码
# 用sum()方法对张量中所有元素求和
X.sum()
pyhton 复制代码
tensor(66.)

可以对张量某个轴上的元素进行求和

py 复制代码
# 对轴0(行)上的元素进行求和,轴0上的对应元素进行求和
# 求和后轴0的维度会消失
X.sum(dim=0)
py 复制代码
X = tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])
py 复制代码
tensor([12., 15., 18., 21.])

广播机制

上面的部分中,我们看到了如何在相同形状的两个张量上执行按元素操作。

在某些情况下,即使形状不同,我们仍然可以通过调用广播机制来执行按元素操作

具体工作方式如下:

  1. 通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状

  2. 对生成的数组执行按元素操作

可以进行广播机制的条件:

  • 每个tensor至少有一个维度

  • 遍历tensor所有维度时,从末尾随开始遍历,两个维度存在以下情况

    • 维度大小相等

    • 维度不等且其中一个维度为1

    • 维度不等且其中一个维度不存在(即维度大小为1),一个标量可以和任何张量进行广播机制,因为标量可以看做是(1,1,1,...)形状的张量

广播遵循以下规则

  • 如果两个tensor的维度不同,则在维度较小的tensor的前面增加维度,使它们维度相等。
  • 对于每个维度,计算结果的维度值取两个tensor中较大的那个值。
  • 两个tensor扩展维度的过程是将数值进行复制。
py 复制代码
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a,b
py 复制代码
(tensor([[0],
         [1],
         [2]]),
 tensor([[0, 1]]))

执行相加操作

py 复制代码
# a为(3,1),b为(1,2),形状不同,无法直接相加
# 通过广播机制,会自动将a和b都扩展(3,2)的矩阵
# 运算过程中 a = ([0,0],[1,1],[2,2]) b = ([0,1],[0,1],[0,1])
a + b
py 复制代码
tensor([[0, 1],
        [1, 2],
        [2, 3]])

逻辑运算

py 复制代码
a == b #此处也会利用广播机制
py 复制代码
tensor([[ True, False],
        [False,  True],
        [False, False]])

索引和切片

和py中的数组中一样,张量中的元素也可以通过索引访问

第一个元素的索引是0,最后一个元素索引是-1

可以指定范围以包含第一个元素和最后一个之前的元素

py 复制代码
X = tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.]])
X[-1],X[1:3]
# X[L:R]是左闭右开,即[L,R)
py 复制代码
(tensor([ 8.,  9., 10., 11.]),
 
 tensor([[ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]]))

除读取外,还可以通过指定索引来将元素写入矩阵

py 复制代码
X[1, 2] = 9
# 表示将第1行第2列的元素赋值为9
# 逗号分隔的是不同轴上的索引
X
py 复制代码
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  9.,  7.],
        [ 8.,  9., 10., 11.]])

为多个元素同时赋值

py 复制代码
# 为多个元素赋值
X[1:2,1:3]=-1
# 表示将第[1,2)行中的是第[1,-1)列的元素赋值为-1,-1此处相当于2
X
py 复制代码
tensor([[ 0.,  1.,  2.,  3.],
        [ 4., -1., -1.,  7.],
        [ 8.,  9., 10., 11.]])

ps:切片和索引的数组都可以缺省表示,会遵循最大范围原则,即缺省会尽量使得索引表示的范围尽量大

py 复制代码
# 如下所示,第一个轴上的索引为:,根据取最大范围原则,默认相当于[0:3]
X[:,1:2]
py 复制代码
tensor([[1],
        [5],
        [9]])

内存节省小tips

在执行Y = X + Y的时候,运算前后Y指向的内存地址会发生变化

why:Python首先计算X + Y,为结果分配新的内存,然后使Y指向内存中的这个新位置

py 复制代码
before = id(Y)
Y = Y + X
before == id(Y)
# False

解决方案:使用Y+=X or Y[:]来代替Y

py 复制代码
# 如何减少分配内存的次数?可以用索引来代替,如用Y[:]来代替Y
# 或者使用类似于Y += X这样的运算方式
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
py 复制代码
id(Z): 2594934203592
id(Z): 2594934203592
py 复制代码
Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z += X
print('id(Z):', id(Z))
py 复制代码
id(Z): 2594933992760
id(Z): 2594933992760

将张量转换为其他python对象

张量转换为NumPy张量(ndarray)很容易,反之也同样容易
torch张量和numpy数组将共享它们的底层内存
就地操作更改一个张量也会同时更改另一个张量
py 复制代码
A = X.numpy()
A
# array([[ 0,  1,  2,  3],
#        [ 4,  5,  6,  7],
#        [ 8,  9, 10, 11]], dtype=int64)
py 复制代码
A[0,0]=1
# 修改A中的元素值,X中的值也会随之改变
A

A的值发生变化

py 复制代码
array([[ 1,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]], dtype=int64)

由于共享相同的内存,X的值也发生了变化

py 复制代码
X
#tensor([[ 1,  1,  2,  3],
#        [ 4,  5,  6,  7],
#        [ 8,  9, 10, 11]])
相关推荐
XiaoLeisj6 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Jasmine_llq26 分钟前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹36 分钟前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin1 小时前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿1 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6171 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v1 小时前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组