应用DeepSORT实现目标跟踪

在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。

DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码,其网址为https://github.com/levan92/deep_sort_realtime。

下面我们就来应用DeepSORT。首先在虚拟环境内安装必要的软件包:

python 复制代码
conda install python=3.8
pip install deep-sort-realtime

可以看出,DeepSORT算法只是需要几个常规的软件包:numpy、scipy和opencv-python,对用户十分友好。

使用DeepSORT也很方便,先导入DeepSORT:

python 复制代码
from deep_sort_realtime.deepsort_tracker import DeepSort

实例化:

python 复制代码
tracker = DeepSort()

DeepSort有一些输入参数,在这里只介绍几个常用的参数:

max_iou_distance:IoU的门控阈值,大于该值的关联会被忽略,默认值为0.7

max_age:当遗漏次数大于该值时轨迹会被删除,默认值为30

n_init:在初始阶段轨迹被保留的帧数,默认值为3

nms_max_overlap:非最大值抑制阈值,如果该值为1.0,表示不使用非最大值抑制,默认值为1.0

max_cosine_distance:余弦距离阈值,默认值为0.2

nn_budget:外观描述符的最大尺寸(int类型),如果为None,则不强制执行,默认值为None

实现目标跟踪:

python 复制代码
tracks = tracker.update_tracks(bbs, frame=frame)

bbs为目标检测器的结果列表,每个结果是一个元组,形式为([left,top,w,h],置信值,类型),其中类型为字符串型

frame为帧图像

输出tracks为目标跟踪结果,使用for循环可以得到各个目标的跟踪信息:

python 复制代码
for track in tracks:

下面介绍一些track的常用属性和方法:

track_id:目标ID

orginal_ltwh、det_conf、det_class:分别表示目标边框信息、置信值和类型,这三个值都是由tracker.update_tracks传入系统的原始目标的信息,但此时已匹配上了目标ID

to_ltrb()和to_ltwh():得到目标边框信息,两者的形式不同

is_confirmed():表示如果该目标ID被确认,则返回True

下面我们就给出DeepSORT实现目标跟踪的完整程序,在这里,我们仍然使用YOLOv8作为目标检测器:

python 复制代码
import numpy as np
import cv2
from ultralytics import YOLO
from deep_sort_realtime.deepsort_tracker import DeepSort

model = YOLO('yolov8l.pt')

cap = cv2.VideoCapture("D:/track/Highway Traffic.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fNUMS = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter("D:/track/mytrack.mp4", fourcc, fps, size)

tracker = DeepSort(max_age=5)

def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
    cv2.rectangle(image, p1, p2, color, thickness=1, lineType=cv2.LINE_AA)
    if label:
        w, h = cv2.getTextSize(label, 0, fontScale=2 / 3, thickness=1)[0]  
        outside = p1[1] - h >= 3
        p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
        cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA)
        cv2.putText(image,
                label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                0, 2/3, txt_color, thickness=1, lineType=cv2.LINE_AA)

while cap.isOpened():
    success, frame = cap.read()
 
    if success: 
        results = model(frame,conf=0.4)
        outputs = results[0].boxes.data.cpu().numpy()
        
        detections = []
        
        if outputs is not None:
            for output in outputs:
                x1, y1, x2, y2 = list(map(int, output[:4]))
                if output[5] == 2:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'car'))
                elif output[5] == 5:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'bus'))
                elif output[5] == 7:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'truck'))

            tracks = tracker.update_tracks(detections, frame=frame)
 
            for track in tracks:
                if not track.is_confirmed():
                    continue
                track_id = track.track_id
                bbox = track.to_ltrb()
                
                box_label(frame, bbox, '#'+str(int(track_id))+ track.det_class , (167, 146, 11))
                        
        cv2.putText(frame, "https://blog.csdn.net/zhaocj", (25, 50),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
      
        cv2.imshow("YOLOv8 Tracking", frame)
        videoWriter.write(frame)
     
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
 
    else:
        break

cap.release()
videoWriter.release()
cv2.destroyAllWindows()
相关推荐
再不会python就不礼貌了2 分钟前
Ollama 0.4 发布!支持 Llama 3.2 Vision,实现多模态 RAG
人工智能·学习·机器学习·ai·开源·产品经理·llama
大大大反派5 分钟前
ONLYOFFICE 8.2深度测评:集成PDF编辑、数据可视化与AI功能的强大办公套件
人工智能·信息可视化·pdf
DK2215120 分钟前
机器学习系列-----主成分分析(PCA)
人工智能·算法·机器学习
SmallBambooCode2 小时前
【人工智能】阿里云PAI平台DSW实例一键安装Python脚本
linux·人工智能·python·阿里云·debian·脚本·模型训练
顾京2 小时前
基于扩散模型的表单插补
人工智能·深度学习·算法
NoneCoder2 小时前
AI时代IDE解析
ide·人工智能
狂奔solar2 小时前
yelp数据集上试验SVD,SVDPP,PMF,NMF 推荐算法
人工智能·机器学习·推荐算法
武子康2 小时前
大数据-216 数据挖掘 机器学习理论 - KMeans 基于轮廓系数来选择 n_clusters
大数据·人工智能·机器学习·数据挖掘·回归·scikit-learn·kmeans
liupenglove2 小时前
ElasticSearch向量检索技术方案介绍
大数据·人工智能·深度学习·elasticsearch·搜索引擎·自动驾驶
黄焖鸡能干四碗3 小时前
【系统文档】系统安全保障措施,安全运营保障,系统应急预案,系统验收相关资料(word原件)
大数据·人工智能·需求分析·软件需求·规格说明书