解决yolo无法指定显卡的问题,实测v5、v7、v8有效

方法1

基本上这个就能解决了!!!

在train.py的最上方加上下面这两行,注意是最上面,其次指定的就是你要使用的显卡

bash 复制代码
import os
os.environ['CUDA_VISIBLE_DEVICES']='6'

方法2:

**问题:**命令行参数指定的是4号卡,但实际却总是在0号卡建立进程

真抽象啊,这一步,模型被送到0号卡,但实际上,送到了4号卡(进程是在4号卡上建立的)
解决办法:

在train.py的train()函数下,第一行选择显卡:

bash 复制代码
device=torch.device('cuda:4')

自己指定显卡即可,也可以在命令行添加一遍,不冲突,但要一样的

基本上方法一就能解决了。

相关推荐
向哆哆14 小时前
卷积与动态特征选择:重塑YOLOv8的多尺度目标检测能力
yolo·目标检测·目标跟踪·yolov8
deflag19 小时前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
FL16238631292 天前
[C++]使用纯opencv部署yolov12目标检测onnx模型
c++·opencv·yolo
倒霉蛋小马2 天前
【YOLOv8】损失函数
深度学习·yolo·机器学习
红色的山茶花3 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-build.py
笔记·深度学习·yolo
咏&志3 天前
目标检测之YOLO论文简读
人工智能·yolo·目标检测
阿_旭4 天前
如何在C++中使用YOLO模型进行目标检测
人工智能·yolo·目标检测
向哆哆4 天前
动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
深度学习·yolo·目标跟踪·yolov8
itom19004 天前
Luckfox Pico Max运行RKNN-Toolkit2中的Yolov5 adb USB仿真
人工智能·yolo
红色的山茶花4 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-augment.py
笔记·深度学习·yolo