解决yolo无法指定显卡的问题,实测v5、v7、v8有效

方法1

基本上这个就能解决了!!!

在train.py的最上方加上下面这两行,注意是最上面,其次指定的就是你要使用的显卡

bash 复制代码
import os
os.environ['CUDA_VISIBLE_DEVICES']='6'

方法2:

**问题:**命令行参数指定的是4号卡,但实际却总是在0号卡建立进程

真抽象啊,这一步,模型被送到0号卡,但实际上,送到了4号卡(进程是在4号卡上建立的)
解决办法:

在train.py的train()函数下,第一行选择显卡:

bash 复制代码
device=torch.device('cuda:4')

自己指定显卡即可,也可以在命令行添加一遍,不冲突,但要一样的

基本上方法一就能解决了。

相关推荐
蹦蹦跳跳真可爱58915 小时前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
蹦蹦跳跳真可爱58917 小时前
Python----目标检测(训练YOLOV8网络)
人工智能·python·yolo·目标检测
孤独野指针*P1 天前
释放模型潜力:浅谈目标检测微调技术(Fine-tuning)
人工智能·深度学习·yolo·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(YOLO简介)
人工智能·python·yolo·目标检测·计算机视觉·目标跟踪
蹦蹦跳跳真可爱5891 天前
Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
人工智能·python·深度学习·神经网络·yolo·目标检测·目标跟踪
Coovally AI模型快速验证1 天前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
Mrs.Gril2 天前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
FL16238631292 天前
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
yolo
Coovally AI模型快速验证3 天前
基于YOLO-NAS-Pose的无人机象群姿态估计:群体行为分析的突破
人工智能·神经网络·算法·yolo·目标检测·无人机·cocos2d
凌康ACG4 天前
易语言使用OCR
c++·yolo·c#·ocr·易语言