微❤关注"电气仔推送"获得资料(专享优惠)
主要内容:
LSTM-AdaBoost负荷预测模型先通过 AdaBoost集成算法串行训练多个基学习器并计算每个基学习 器的权重系数,接着将各个基学习器的预测结果进行线性组合,生成最终的预测结果。代码中的LSTM可以替换为任意的机器学习算法。
部分程序:
%% 数据归一化
inputn,inputps\]=mapminmax(input_train,0,1); \[outputn,outputps\]=mapminmax(output_train); inputn_test=mapminmax('apply',input_test,inputps); %% 获取输入层节点、输出层节点个数 inputnum=size(input_train,1); outputnum=size(output_train,1); disp('/') disp('LSTM神经网络结构...') disp(\['输入层的节点数为:',num2str(inputnum)\]) disp(\['输出层的节点数为:',num2str(outputnum)\]) numFeatures = inputnum; %特征为一维 numResponses = outputnum; %输出也是一维 numHiddenUnits1 = 25; %创建LSTM回归网络,指定LSTM层的隐含单元个数。可调 layers = \[ ... sequenceInputLayer(numFeatures) %输入层 lstmLayer(numHiddenUnits1, 'OutputMode', 'sequence') fullyConnectedLayer(numResponses) %为全连接层,是输出的维数。 regressionLayer\]; %其计算回归问题的半均方误差模块 。即说明这不是在进行分类问题。 %指定训练选项,求解器设置为adam, 1000轮训练。 %梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率。 options = trainingOptions('adam', ... 'MaxEpochs',1000, ... 'GradientThreshold', 1, ... 'InitialLearnRate',0.01, ... 'LearnRateSchedule','piecewise', ...%每当经过一定数量的时期时,学习率就会乘以一个系数。 'LearnRateDropFactor', 0.01, ... 'LearnRateDropPeriod',600, ... %乘法之间的纪元数由" LearnRateDropPeriod"控制。可调 'Verbose',0, ... %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。默认值为true。 'Plots','training-progress'); %构建曲线图 将'training-progress'替换为none net0 = trainNetwork(inputn,outputn,layers,options); an0 = predict(net0,inputn_test); %预测结果反归一化与误差计算 test_simu0=mapminmax('reverse',an0,outputps); %把仿真得到的数据还原为原始的数量级 %误差指标 error0 = output_test - test_simu0; mse0=mse(output_test,test_simu0) %% 标准LSTM神经网络作图 figure plot(output_test,'b-','markerfacecolor',\[0.5,0.5,0.9\],'MarkerSize',6) hold on plot(test_simu0,'r--','MarkerSize',6) title(\['mse误差:',num2str(mse0)\]) legend('真实y','预测的y') xlabel('样本数') ylabel('负荷值') **训练进度:**  预测结果:   **预测误差:** 