Large Language Models Meet Knowledge Graphs to Answer Factoid Questions

本文是LLM系列文章,针对《Large Language Models Meet Knowledge Graphs to Answer Factoid Questions》的翻译。

大型语言模型与知识图谱相遇,回答虚假问题

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验设计](#4 实验设计)
  • [5 结果与讨论](#5 结果与讨论)
  • [6 结论](#6 结论)

摘要

最近,有研究表明,将结构化知识整合到大型语言模型中可以显著提高各种NLP任务的结果。在本文中,我们提出了一种方法来探索预训练的文本到文本语言模型,该模型丰富了来自知识图谱的附加信息,用于回答事实性问题。更具体地说,我们提出了一种基于问题实体和候选答案的知识图谱子图提取算法。然后,我们通过提取的子图的线性化,使用基于transformer的模型获得易于解释的信息。使用提取的信息对候选答案进行最终重新排序,可将预训练的文本到文本语言模型的Hits@1分数提高4 - 6%。

1 引言

2 相关工作

3 提出的方法

4 实验设计

5 结果与讨论

6 结论

综上所述,在本文中,我们提出了一种利用知识图谱的附加信息来提高llm问答输出的方法。通过提取与输入问题实体和预测答案候选人相关的子图,我们将Hits@1提高了4%到6%;并根据提取的子图对候选答案进行进一步排序。我们的结果分析表明,建议的解决方案提高了交叉题的分数,而对比较题几乎没有影响。消融研究证明了pipeline各步骤的效率。作为未来的工作,我们计划将我们的方法扩展到其他语言,并使用实体链接器和其他生成式Transformer模型测试整个pipeline。

相关推荐
嗷嗷哦润橘_8 分钟前
AI Agent学习:MetaGPT项目之RAG
人工智能·python·学习·算法·deepseek
Buxxxxxx12 分钟前
DAY 39 GPU训练及类的call方法
人工智能
我有医保我先冲14 分钟前
企业级会议管理工具选型指南:从需求分析到方案落地
人工智能·经验分享·自然语言处理·需求分析
良策金宝AI20 分钟前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
陈天伟教授25 分钟前
人工智能应用-机器视觉:车牌识别(2)
人工智能·神经网络·机器学习
江上鹤.14827 分钟前
Day37 MLP神经网络的训练
人工智能·深度学习·神经网络
java1234_小锋42 分钟前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer
min1811234561 小时前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图
中冕—霍格沃兹软件开发测试1 小时前
边界值分析:功能测试中的精度利器
人工智能·功能测试·科技·测试工具·appium·bug
檐下翻书1731 小时前
量子计算 + AI:蛋白质折叠预测速度提升万倍,开启靶向药新纪元
人工智能