Large Language Models Meet Knowledge Graphs to Answer Factoid Questions

本文是LLM系列文章,针对《Large Language Models Meet Knowledge Graphs to Answer Factoid Questions》的翻译。

大型语言模型与知识图谱相遇,回答虚假问题

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 提出的方法](#3 提出的方法)
  • [4 实验设计](#4 实验设计)
  • [5 结果与讨论](#5 结果与讨论)
  • [6 结论](#6 结论)

摘要

最近,有研究表明,将结构化知识整合到大型语言模型中可以显著提高各种NLP任务的结果。在本文中,我们提出了一种方法来探索预训练的文本到文本语言模型,该模型丰富了来自知识图谱的附加信息,用于回答事实性问题。更具体地说,我们提出了一种基于问题实体和候选答案的知识图谱子图提取算法。然后,我们通过提取的子图的线性化,使用基于transformer的模型获得易于解释的信息。使用提取的信息对候选答案进行最终重新排序,可将预训练的文本到文本语言模型的Hits@1分数提高4 - 6%。

1 引言

2 相关工作

3 提出的方法

4 实验设计

5 结果与讨论

6 结论

综上所述,在本文中,我们提出了一种利用知识图谱的附加信息来提高llm问答输出的方法。通过提取与输入问题实体和预测答案候选人相关的子图,我们将Hits@1提高了4%到6%;并根据提取的子图对候选答案进行进一步排序。我们的结果分析表明,建议的解决方案提高了交叉题的分数,而对比较题几乎没有影响。消融研究证明了pipeline各步骤的效率。作为未来的工作,我们计划将我们的方法扩展到其他语言,并使用实体链接器和其他生成式Transformer模型测试整个pipeline。

相关推荐
love530love10 分钟前
【笔记】 Podman Desktop 中部署 Stable Diffusion WebUI (GPU 支持)
人工智能·windows·笔记·python·容器·stable diffusion·podman
岁月宁静15 分钟前
AI 聊天消息长列表性能优化:后端分页 + 前端虚拟滚动
前端·vue.js·人工智能
阿水实证通23 分钟前
能源经济大赛选题推荐:新能源汽车试点城市政策对能源消耗的负面影响——基于技术替代效应的视角
大数据·人工智能·汽车
视觉人机器视觉24 分钟前
机器视觉Halcon3D中,六大类3D处理算子
人工智能·计算机视觉·3d·视觉检测
GAOJ_K25 分钟前
从汽车传动到航空航天:滚珠花键的跨领域精密革命
人工智能·科技·机器人·自动化·制造
yunyun188635832 分钟前
AI - 自然语言处理(NLP) - part 2 - 词向量
人工智能·自然语言处理
热心不起来的市民小周1 小时前
基于 RoBERTa + 多策略优化的中文商品名细粒度分类
人工智能·分类·数据挖掘
却道天凉_好个秋1 小时前
OpenCV(三):保存文件
人工智能·opencv·计算机视觉
aneasystone本尊1 小时前
深入 Dify 应用的会话流程之流式处理
人工智能
深栈1 小时前
机器学习:决策树
人工智能·python·决策树·机器学习·sklearn