深度学习环境搭建【显卡算力、CUDA、pytorch、tensorflow选择】

总结:深度学习环境搭建【显卡算力、CUDA、pytorch、tensorflow选择】

一、了解自己的显卡,确定其对应的算力

不同显卡对应的算力

二、根据算力、显卡驱动,选择cuda版本

显卡驱动与cuda版本对应关系

  • 注意:
    • 如果没有安装显卡驱动,先安装显卡驱动,ubuntu安装显卡驱动
    • 如果已经安装过显卡驱动,根据显卡驱动与cuda版本对应关系,选择cuda。【建议:在显卡驱动支持的范围内,尽量选择高版本的cuda,因为cuda可以向下兼容】

三、pytorch版本选择

进入pytorch官网,选择需要的torch版本安装。

  • 注意:
    • 在显卡支持的范围内,可以自由的选择cuda+torch进行安装,亲测训练目标检测模型可以使用gpu加速
    • 这里讲一下,为什么在显卡驱动支持的范围内,尽量选择高版本的cuda
      • 比如,在定向框检测的情况下,需要创建cuda的扩展(python setup.py develop)。这种情况下就需要考虑电脑上安装的cuda与conda环境中的cudatoolkit或pytorch版本问题
        • 如果电脑上安装的cuda版本高(比如:cuda11.7),conda环境中的cudatoolkit可以低于11.7版本,执行 python setup.py develop 时可以通过;
        • 如果电脑上安装的cuda版本低(比如:cuda10.0),conda环境中的cudatoolkit低于10.0时可以编译通过,高于10.0时则编译失败。

四、tensorflow版本选择

tensorflow与tensorflow-gpu的安装和使用似乎没有pytorch那么挑剔,在conda环境中安装对应的cudatoolkit, cudnn, tensorflow-gpu 即可,安装教程

相关推荐
静心问道37 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶40 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
石迹耿千秋6 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
绝顶大聪明9 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
Danceful_YJ10 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
海绵波波10712 小时前
opencv、torch、torchvision、tensorflow的区别
人工智能·opencv·tensorflow
LGGGGGQ13 小时前
嵌入式学习-PyTorch(7)-day23
人工智能·pytorch·学习
甄卷13 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法
PyAIExplorer13 小时前
PyTorch 损失函数详解:从理论到实践
人工智能·pytorch·python
豆豆13 小时前
神经网络构建
人工智能·深度学习·神经网络