【吴恩达深度学习】

第一周

1、修正线性单元ReLU

第二周、Logistic回归

1、样本矩阵X:

是一个m*nx的矩阵,表示m个样本(一个竖列代表一个样本),每个样本有nx个特征。

2、标签矩阵Y:[y1,y2,y3,ym]

m个训练样本分别对应的标签。

3、模型

X为输入样本, 为预测值输出,

4、损失函数

定性分析:y=1时, 越大损失函数越小

y=0时, 越小顺势函数越小

为什么损失函数不用 因为是非凸的,梯度下降时可能有多个局部最优值。

5、成本函数

损失函数是针对一个样本的情况,成本函数是针对整个样本的情况,是每个样本损失函数的平均值。

6、梯度下降,迭代

相关推荐
relis13 分钟前
llama.cpp Flash Attention 论文与实现深度对比分析
人工智能·深度学习
盼小辉丶16 分钟前
Transformer实战(21)——文本表示(Text Representation)
人工智能·深度学习·自然语言处理·transformer
艾醒(AiXing-w)20 分钟前
大模型面试题剖析:模型微调中冷启动与热启动的概念、阶段与实例解析
人工智能·深度学习·算法·语言模型·自然语言处理
科技小E24 分钟前
流媒体视频技术在明厨亮灶场景中的深度应用
人工智能
geneculture33 分钟前
融智学院十大学部知识架构示范样板
人工智能·数据挖掘·信息科学·哲学与科学统一性·信息融智学
无风听海35 分钟前
神经网络之交叉熵与 Softmax 的梯度计算
人工智能·深度学习·神经网络
算家计算35 分钟前
AI树洞现象:是社交降级,还是我们都在失去温度?
人工智能
java1234_小锋38 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 神经网络基础原理
python·深度学习·tensorflow·tensorflow2
JJJJ_iii39 分钟前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
sensen_kiss42 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.1 导论与Hebb学习规则
人工智能·神经网络·学习