【吴恩达深度学习】

第一周

1、修正线性单元ReLU

第二周、Logistic回归

1、样本矩阵X:

是一个m*nx的矩阵,表示m个样本(一个竖列代表一个样本),每个样本有nx个特征。

2、标签矩阵Y:[y1,y2,y3,ym]

m个训练样本分别对应的标签。

3、模型

X为输入样本, 为预测值输出,

4、损失函数

定性分析:y=1时, 越大损失函数越小

y=0时, 越小顺势函数越小

为什么损失函数不用 因为是非凸的,梯度下降时可能有多个局部最优值。

5、成本函数

损失函数是针对一个样本的情况,成本函数是针对整个样本的情况,是每个样本损失函数的平均值。

6、梯度下降,迭代

相关推荐
是十一月末8 分钟前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
机智的叉烧41 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀44 分钟前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技013 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
盛派网络小助手3 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
Eric.Lee20213 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
cd_farsight3 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说3 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu4 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理