【吴恩达深度学习】

第一周

1、修正线性单元ReLU

第二周、Logistic回归

1、样本矩阵X:

是一个m*nx的矩阵,表示m个样本(一个竖列代表一个样本),每个样本有nx个特征。

2、标签矩阵Y:[y1,y2,y3,ym]

m个训练样本分别对应的标签。

3、模型

X为输入样本, 为预测值输出,

4、损失函数

定性分析:y=1时, 越大损失函数越小

y=0时, 越小顺势函数越小

为什么损失函数不用 因为是非凸的,梯度下降时可能有多个局部最优值。

5、成本函数

损失函数是针对一个样本的情况,成本函数是针对整个样本的情况,是每个样本损失函数的平均值。

6、梯度下降,迭代

相关推荐
ccLianLian15 小时前
计算机基础·cs336·损失函数,优化器,调度器,数据处理和模型加载保存
人工智能·深度学习·计算机视觉·transformer
asheuojj15 小时前
2026年GEO优化获客效果评估指南:如何精准衡量TOP5关
大数据·人工智能·python
多恩Stone15 小时前
【RoPE】Flux 中的 Image Tokenization
开发语言·人工智能·python
callJJ15 小时前
Spring AI ImageModel 完全指南:用 OpenAI DALL-E 生成图像
大数据·人工智能·spring·openai·springai·图像模型
铁蛋AI编程实战15 小时前
2026 大模型推理框架测评:vLLM 0.5/TGI 2.0/TensorRT-LLM 1.8/DeepSpeed-MII 0.9 性能与成本防线对比
人工智能·机器学习·vllm
23遇见15 小时前
CANN ops-nn 仓库高效开发指南:从入门到精通
人工智能
SAP工博科技15 小时前
SAP 公有云 ERP 多工厂多生产线数据统一管理技术实现解析
大数据·运维·人工智能
芷栀夏15 小时前
CANN ops-math:异构计算场景下基础数学算子的深度优化与硬件亲和设计解析
人工智能·cann
爱吃泡芙的小白白15 小时前
深入解析CNN中的BN层:从稳定训练到前沿演进
人工智能·神经网络·cnn·梯度爆炸·bn·稳定模型
聆风吟º15 小时前
CANN runtime 性能优化:异构计算下运行时组件的效率提升与资源利用策略
人工智能·深度学习·神经网络·cann