PyTorch——优化器(9)

优化器根据梯度调整参数,以达到降低误差

python 复制代码
import torch.optim
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

# 加载CIFAR10测试数据集,设置transform将图像转换为Tensor
dataset = torchvision.datasets.CIFAR10("./data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
# 创建数据加载器,设置批量大小为64
dataloader = DataLoader(dataset, batch_size=64)

# 定义卷积神经网络模型
class TY(nn.Module):
    def __init__(self):
        super(TY, self).__init__()
        # 构建网络结构:3个卷积层+池化层组合,2个全连接层
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),    # 输入3通道,输出32通道,卷积核5x5
            MaxPool2d(2),                   # 最大池化,步长2
            Conv2d(32, 32, 5, padding=2),   # 第二层卷积
            MaxPool2d(2),                   # 第二次池化
            Conv2d(32, 64, 5, padding=2),   # 第三层卷积
            MaxPool2d(2),                   # 第三次池化
            Flatten(),                      # 将多维张量展平为向量
            Linear(1024, 64),               # 全连接层,输入1024维,输出64维
            Linear(64, 10),                 # 输出层,10个类别对应10个输出
        )

    def forward(self, x):
        # 定义前向传播路径
        x = self.model1(x)
        return x

# 定义损失函数(交叉熵损失适用于多分类问题)
loss = nn.CrossEntropyLoss()
# 实例化模型
ty = TY()
# 定义优化器(随机梯度下降),设置学习率为0.01
optim = torch.optim.SGD(ty.parameters(), lr=0.01)

# 训练20个完整轮次
for epoch in range(20):
    running_loss = 0.0  # 初始化本轮累计损失
    
    # 遍历数据加载器中的每个批次
    for data in dataloader:
        imgs, targets = data  # 获取图像和标签
        outputs = ty(imgs)    # 前向传播
        result_loss = loss(outputs, targets)  # 计算损失
        
        optim.zero_grad()     # 梯度清零,防止累积
        result_loss.backward()  # 反向传播计算梯度
        optim.step()          # 更新模型参数
        
        running_loss += result_loss  # 累加损失值
    
    # 打印本轮训练的累计损失
    print(f"Epoch {epoch+1}, Loss: {running_loss}")
相关推荐
gorgeous(๑>؂<๑)1 天前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
王哈哈^_^1 天前
【完整源码+数据集】课堂行为数据集,yolo课堂行为检测数据集 2090 张,学生课堂行为识别数据集,目标检测课堂行为识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
神仙别闹1 天前
基于 C++和 Python 实现计算机视觉
c++·python·计算机视觉
hongjianMa1 天前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
Shang180989357261 天前
T41NQ/T41N高性能低功耗SOC芯片 软硬件资料T41NQ适用于各种AIoT应用,适用于智能安防、智能家居,机器视觉等领域方案
驱动开发·嵌入式硬件·计算机视觉·fpga开发·信息与通信·t41nq
现在,此刻1 天前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归
能来帮帮蒟蒻吗1 天前
深度学习(2)—— 神经网络与训练
人工智能·深度学习·神经网络
知行力1 天前
【GitHub每日速递 20251111】PyTorch:GPU加速、动态网络,深度学习平台的不二之选!
pytorch·深度学习·github
却道天凉_好个秋1 天前
OpenCV(二十一):HSV与HSL
人工智能·opencv·计算机视觉
ifeng09181 天前
HarmonyOS资源加载进阶:惰性加载、预加载与缓存机制
深度学习·缓存·harmonyos