PyTorch——优化器(9)

优化器根据梯度调整参数,以达到降低误差

python 复制代码
import torch.optim
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

# 加载CIFAR10测试数据集,设置transform将图像转换为Tensor
dataset = torchvision.datasets.CIFAR10("./data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
# 创建数据加载器,设置批量大小为64
dataloader = DataLoader(dataset, batch_size=64)

# 定义卷积神经网络模型
class TY(nn.Module):
    def __init__(self):
        super(TY, self).__init__()
        # 构建网络结构:3个卷积层+池化层组合,2个全连接层
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),    # 输入3通道,输出32通道,卷积核5x5
            MaxPool2d(2),                   # 最大池化,步长2
            Conv2d(32, 32, 5, padding=2),   # 第二层卷积
            MaxPool2d(2),                   # 第二次池化
            Conv2d(32, 64, 5, padding=2),   # 第三层卷积
            MaxPool2d(2),                   # 第三次池化
            Flatten(),                      # 将多维张量展平为向量
            Linear(1024, 64),               # 全连接层,输入1024维,输出64维
            Linear(64, 10),                 # 输出层,10个类别对应10个输出
        )

    def forward(self, x):
        # 定义前向传播路径
        x = self.model1(x)
        return x

# 定义损失函数(交叉熵损失适用于多分类问题)
loss = nn.CrossEntropyLoss()
# 实例化模型
ty = TY()
# 定义优化器(随机梯度下降),设置学习率为0.01
optim = torch.optim.SGD(ty.parameters(), lr=0.01)

# 训练20个完整轮次
for epoch in range(20):
    running_loss = 0.0  # 初始化本轮累计损失
    
    # 遍历数据加载器中的每个批次
    for data in dataloader:
        imgs, targets = data  # 获取图像和标签
        outputs = ty(imgs)    # 前向传播
        result_loss = loss(outputs, targets)  # 计算损失
        
        optim.zero_grad()     # 梯度清零,防止累积
        result_loss.backward()  # 反向传播计算梯度
        optim.step()          # 更新模型参数
        
        running_loss += result_loss  # 累加损失值
    
    # 打印本轮训练的累计损失
    print(f"Epoch {epoch+1}, Loss: {running_loss}")
相关推荐
子夜江寒25 分钟前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
没学上了7 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好7 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能8 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案8 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
黑客思维者9 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
北山小恐龙10 小时前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer
汗流浃背了吧,老弟!10 小时前
为什么RAG在多轮对话中可能表现不佳?
人工智能·深度学习
糖葫芦君11 小时前
RQ-VAE(残差量化-变分自编码器)
人工智能·深度学习
yj_sharing11 小时前
动手学深度学习softmax回归的笔记
笔记·深度学习·回归