快速幂求逆元

思路

题意:

给出两个整数 a , p a,p a,p,其中 p p p 是质数,求出一个整数 b b b,使得 a ∗ b = 1 ( m o d p ) a~*~b~=~1(mod~p) a ∗ b = 1(mod p) 成立(即求 a a a 模 p p p 的乘法逆元)。

首先我们需要记住费马小定理 :若 p p p 为质数且 a m o d p ! = 0 a~mod~p~!=~0 a mod p != 0,那么式子 a p − 1 = 1 ( m o d p ) a^{p-1}~=~1(mod~p) ap−1 = 1(mod p) 成立。

我们可以把这个式子转化为 p ∗ a p − 2 = 1 ( m o d p ) p~*~a^{p-2}~=~1(mod~p) p ∗ ap−2 = 1(mod p)。

那么易知:

当 a m o d p ! = 0 a~mod~p~!=~0 a mod p != 0 时,需要求的乘法逆元 b b b 的值等于 a p − 2 a^{p-2} ap−2;当 a m o d p = 0 a~mod~p~=~0 a mod p = 0 时,乘法逆元不存在。

C o d e Code Code

cpp 复制代码
#include <bits/stdc++.h>
#define int long long
#define sz(a) ((int)a.size())
#define all(a) a.begin(), a.end()
using namespace std;
using PII = pair<int, int>;
using i128 = __int128;
const int N = 2e5 + 10;

int qpow(int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1) {
			res = res * a % p;
		}
		a = a * a % p;
		b >>= 1;
	}
	return res;
}

signed main() {
	int a, p;
	cin >> a >> p;
	if (p >= 2 && a % p) {
		cout << qpow(a, p - 2, p) << "\n";
	} else {
		cout << "impossible\n";
	}
	return 0;
}
相关推荐
逆小舟44 分钟前
【Linux】人事档案——用户及组管理
linux·c++
风中的微尘5 小时前
39.网络流入门
开发语言·网络·c++·算法
混分巨兽龙某某6 小时前
基于Qt Creator的Serial Port串口调试助手项目(代码开源)
c++·qt creator·串口助手·serial port
西红柿维生素6 小时前
JVM相关总结
java·jvm·算法
小冯记录编程6 小时前
C++指针陷阱:高效背后的致命危险
开发语言·c++·visual studio
C_Liu_7 小时前
C++:类和对象(下)
开发语言·c++
coderxiaohan7 小时前
【C++】类和对象1
java·开发语言·c++
阿昭L7 小时前
MFC仿真
c++·mfc
ChillJavaGuy8 小时前
常见限流算法详解与对比
java·算法·限流算法
sali-tec8 小时前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#