快速幂求逆元

思路

题意:

给出两个整数 a , p a,p a,p,其中 p p p 是质数,求出一个整数 b b b,使得 a ∗ b = 1 ( m o d p ) a~*~b~=~1(mod~p) a ∗ b = 1(mod p) 成立(即求 a a a 模 p p p 的乘法逆元)。

首先我们需要记住费马小定理 :若 p p p 为质数且 a m o d p ! = 0 a~mod~p~!=~0 a mod p != 0,那么式子 a p − 1 = 1 ( m o d p ) a^{p-1}~=~1(mod~p) ap−1 = 1(mod p) 成立。

我们可以把这个式子转化为 p ∗ a p − 2 = 1 ( m o d p ) p~*~a^{p-2}~=~1(mod~p) p ∗ ap−2 = 1(mod p)。

那么易知:

当 a m o d p ! = 0 a~mod~p~!=~0 a mod p != 0 时,需要求的乘法逆元 b b b 的值等于 a p − 2 a^{p-2} ap−2;当 a m o d p = 0 a~mod~p~=~0 a mod p = 0 时,乘法逆元不存在。

C o d e Code Code

cpp 复制代码
#include <bits/stdc++.h>
#define int long long
#define sz(a) ((int)a.size())
#define all(a) a.begin(), a.end()
using namespace std;
using PII = pair<int, int>;
using i128 = __int128;
const int N = 2e5 + 10;

int qpow(int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1) {
			res = res * a % p;
		}
		a = a * a % p;
		b >>= 1;
	}
	return res;
}

signed main() {
	int a, p;
	cin >> a >> p;
	if (p >= 2 && a % p) {
		cout << qpow(a, p - 2, p) << "\n";
	} else {
		cout << "impossible\n";
	}
	return 0;
}
相关推荐
橙几11 分钟前
击败了90%的解法?Two Sum 从 O(n²) 到 O(n) 的优化之路
算法
叶子爱分享25 分钟前
经典排序算法之归并排序(Merge Sort)
算法·排序算法
珹洺31 分钟前
C++算法竞赛篇:DevC++ 如何进行debug调试
java·c++·算法
呆呆的小鳄鱼1 小时前
leetcode:冗余连接 II[并查集检查环][节点入度]
算法·leetcode·职场和发展
墨染点香1 小时前
LeetCode Hot100【6. Z 字形变换】
java·算法·leetcode
沧澜sincerely1 小时前
排序【各种题型+对应LeetCode习题练习】
算法·leetcode·排序算法
CQ_07121 小时前
自学力扣:最长连续序列
数据结构·算法·leetcode
弥彦_1 小时前
cf1925B&C
数据结构·算法
YuTaoShao2 小时前
【LeetCode 热题 100】994. 腐烂的橘子——BFS
java·linux·算法·leetcode·宽度优先
古月-一个C++方向的小白7 小时前
C++11之lambda表达式与包装器
开发语言·c++