sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征 ,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系 。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点

关于特征为连续属性时CART决策树如何处理:二分法------先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客

sklearn里的决策树怎么处理类别特征的

答案是------不处理。在sklearn实现的CART树中,是用同一种方式 去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征

可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。

另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多 ,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关推荐
AKAMAI5 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5205 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨5 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom5 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn5 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美5 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch6 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4156 小时前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊7 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪7 小时前
AI建站推荐
大数据·人工智能·python