sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征 ,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系 。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点

关于特征为连续属性时CART决策树如何处理:二分法------先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客

sklearn里的决策树怎么处理类别特征的

答案是------不处理。在sklearn实现的CART树中,是用同一种方式 去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征

可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。

另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多 ,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关推荐
是毛毛吧2 小时前
豆包风波后的破局者:智谱 AutoGLM 让“AI 手机”走向公共基建
人工智能·智能手机·开源·github·开源软件
Hi202402172 小时前
CARLA自动驾驶仿真环境搭建与DEMO详解
人工智能·机器学习·自动驾驶
黑客思维者3 小时前
XGW-9000系列高端新能源电站边缘网关软件架构设计
人工智能·物联网·iot·新能源·软件架构·边缘网关·计算机硬件
Biomamba生信基地3 小时前
人工智能药学大会现场
人工智能·药学
微尘hjx3 小时前
【目标检测软件 01】YOLO识别软件功能与操作指南
人工智能·测试工具·yolo·目标检测·计算机视觉·ai·pyqt
ekprada3 小时前
Day 38 - Dataset 和 DataLoader
人工智能·python
测试人社区-小明3 小时前
洞察金融科技测试面试:核心能力与趋势解析
人工智能·科技·面试·金融·机器人·自动化·github
LO嘉嘉VE3 小时前
学习笔记二十九:贝叶斯决策论
人工智能·笔记·学习
猫天意3 小时前
【即插即用模块】AAAI2026 | MHCB+DPA:特征提取+双池化注意力,涨点必备,SCI保二争一!彻底疯狂!!!
网络·人工智能·深度学习·算法·yolo
_codemonster3 小时前
AI大模型入门到实战系列(三)词元(token)和嵌入(embedding)
人工智能·机器学习·embedding