sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征 ,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系 。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点

关于特征为连续属性时CART决策树如何处理:二分法------先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客

sklearn里的决策树怎么处理类别特征的

答案是------不处理。在sklearn实现的CART树中,是用同一种方式 去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征

可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。

另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多 ,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关推荐
千匠网络18 分钟前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
JERRY. LIU30 分钟前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉
l木本I44 分钟前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
通义灵码1 小时前
在 IDEA 里用 AI 写完两个 Java 全栈功能,花了 7 分钟
人工智能·ai编程·qoder
AI营销快线1 小时前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启1 小时前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
xiaoxiaoxiaolll1 小时前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习
OpenCSG1 小时前
现代 AI 代理设计:17 种架构的系统化实战合集
人工智能·架构
AKAMAI1 小时前
BlackstoneOne 实现业务十倍增长
人工智能·云计算
KKKlucifer1 小时前
从 “人工标注” 到 “AI 驱动”:数据分类分级技术的效率革命
大数据·人工智能·分类