sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征 ,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系 。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点

关于特征为连续属性时CART决策树如何处理:二分法------先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客

sklearn里的决策树怎么处理类别特征的

答案是------不处理。在sklearn实现的CART树中,是用同一种方式 去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征

可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。

另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多 ,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关推荐
水如烟3 分钟前
孤能子视角:人工智能的“计算博弈“––“标量“即“矢量“
人工智能
Hugging Face15 分钟前
Codex 正在推动开源 AI 模型的训练与发布
人工智能
程途拾光15817 分钟前
发展中国家的AI弯道超车:医疗AI的低成本本土化之路
大数据·人工智能
vi1212331 分钟前
土壤与水分遥感反演技术综述:原理、方法与应用
人工智能·算法·无人机
我不是QI38 分钟前
周志华《机器学习—西瓜书》八
人工智能·机器学习
shenzhenNBA40 分钟前
python如何调用AI之deepseek的API接口?
人工智能·python·deepseek·调用deepseek api
王中阳Go41 分钟前
攻克制造业知识检索难题:我们如何用Go+AI打造高可用RAG系统,将查询效率提升600%
人工智能·后端·go
有痣青年43 分钟前
Gemini 3 Flash 技术深度解析:多模态、推理引擎与开发者新特性
人工智能·ai编程·gemini
CodeLinghu44 分钟前
路由:Agent能够根据条件动态决定工作流的下一步
人工智能·microsoft·ai·llm
Felaim1 小时前
【自动驾驶基础】LDM(Latent Diffusion Model) 要点总结
人工智能·机器学习·自动驾驶