sklearn处理离散变量的问题——以决策树为例

最近做项目遇到的数据集中,有许多高维类别特征。catboost是可以直接指定categorical_columns的【直接进行ordered TS编码】,但是XGboost和随机森林甚至决策树都没有这个接口。但是在学习决策树的时候(无论是ID3、C4.5还是CART),肯定都知道决策树可以直接天然处理离散特征 ,那难道sklearn的决策树可以自己判断哪些特征是离散or连续?

决策树怎么处理连续特征

首先要明确,分类树和回归树,只是看label值是类别型还是连续型,和特征中是离散还是连续没有关系 。并不是说CART回归树不能使用离散的特征,只是CART回归树里并不使用gini系数来计算增益。【补充题外话:CART作为一个二叉树,每次分列并不会和ID3一样消耗这一列特征,只是消耗了该特征的一个分界点

关于特征为连续属性时CART决策树如何处理:二分法------先从小到大依次排序,然后依次划分,进行判定。具体可以参考这篇博客

sklearn里的决策树怎么处理类别特征的

答案是------不处理。在sklearn实现的CART树中,是用同一种方式 去处理离散与连续的特征的,即:把离散的特征也都当做连续的处理了,只能处理连续特征 和 做编码成数字的离散特征

可以看这个问题,我的理解是sklearn为了速度对CART的原来算法做了一定的改进,不再按照原来的方法处理离散特征,而是都统一成连续特征来处理了【所以没有categorical_columns接口】。

解决方案

如果想使用DT、RF、XGB,离散特征需要人为进行处理。可以看这个博客,对类别特征进行编码。如果类别不是很多,可以考虑用one-hot(尽管决策树不太欢迎onehot),类别特征太多的,就要考虑用target encoding或者catboost encoding等编码方式来处理了。

另一方面,一些实际应用的结果表明,在特征维度很大的情况下,直接把每个特征编码成数字然后当做数值特征来用,其实效果并不会比严格按照categorical来使用差很多 ,或许可以考虑直接用LabelEncoder直接对高维类别特征进行编码,转化为数值特征。
或者考虑换LGBM、CatBoost

相关推荐
飞哥数智坊2 分钟前
当你还在用 AI 写周报,别人的 AI 已经在炒币炒股了
人工智能
Juchecar11 分钟前
翻译:软件开发的演进:从机器码到 AI 编排
人工智能
字节数据平台17 分钟前
火山引擎发布Data Agent新能力,推动用户洞察进入“智能3.0时代”
大数据·人工智能
盈电智控19 分钟前
体力劳动反而更难被AI取代?物联网科技如何守护最后的劳动阵地
开发语言·人工智能·python
也许是_40 分钟前
大模型原理之深度学习与神经网络入门
人工智能·深度学习·神经网络
数智顾问41 分钟前
(111页PPT)大型集团IT治理体系规划详细解决方案(附下载方式)
大数据·人工智能
海棠AI实验室44 分钟前
AI代发货(DropShopping)革命:构建自动化电商帝国终极指南
运维·人工智能·自动化
谢景行^顾1 小时前
深度学习--激活函数
人工智能·python·机器学习
三千院本院1 小时前
LlaMA_Factory实战微调Qwen-LLM大模型
人工智能·python·深度学习·llama
ifeng09181 小时前
HarmonyOS实战项目:AI健康助手(影像识别与健康分析)
人工智能·华为·wpf·harmonyos