python实现图像的直方图均衡化

直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过重新分配图像中的像素值,使得图像的像素值分布更加均匀,增强图像的对比度,从而改善图像的视觉效果。

直方图均衡化的过程如下:

  • 灰度转换:如果图像是彩色图像,则首先需要将其转换为灰度图像。这可以通过将彩色图像的RGB通道值平均或权重化来实现,得到一个表示亮度的灰度图像。
  • 统计直方图:对于灰度图像,统计每个像素值的频数,生成原始图像的直方图。直方图表示了不同像素值的数量分布。
  • 计算累积分布函数:通过计算原始图像的累积分布函数,可以得到每个像素值的累积概率分布,即小于等于该像素值的概率。可以通过对直方图进行归一化和累加操作得到。
  • 映射像素值:根据每个像素值的累积概率分布映射出新的像素值,即将概率乘以255得到均衡化后的像素值。
  • 像素重新映射:对于原始图像中的每个像素,根据映射将其像素值替换为均衡化后的像素值。
  • 生成均衡化后的图像:根据重新映射的像素值,生成均衡化后的图像。均衡化后的图像在直方图上将有更平坦的分布,从而提高了图像的对比度。

可以直接调用openCV的库函数实现图像的直方图均衡化

复制代码
cv2.equalizeHist(img)

可以写一个完整的测试代码如下

复制代码
import matplotlib.pyplot as plt
import cv2

img = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.hist(img.ravel(), bins=256)
plt.title('origin')
plt.show()  # 原始直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.title('origin')
plt.imshow(img)
plt.show()  # 原始灰度图

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
plt.hist(img.ravel(), bins=256)
plt.title('systemEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('systemEqualize')
plt.show()  # 均衡化灰度图

在这里我们手动实现一个图像的直方图均衡化,不调用库函数

首先读取一张照片并将其转化为灰度图

复制代码
img = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

然后计算图像的直方图,并计算直方图的累积分布

复制代码
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
cdf = hist.cumsum()

再计算像素值的累积分布概率,并根据累积分布概率映射出新的像素值,根据该映射重新分配原图像的像素值,根据插值操作可以很方便的进行一一映射,这个interp函数非常的讲究,我研究了半天还是没有看懂它的作用,直到后来看到某位大佬的解说才醍醐灌顶恍然大悟------interpret(x,xp,yp)以xp和yp构造映射函数f,返回f(x),这就让我们的像素值映射变得简单

复制代码
mapPixel = 255 * cdf / cdf[-1]
img = numpy.interp(img.ravel(), range(256), mapPixel).reshape(img.shape)

最后输出均衡化的图像以及均衡化的直方图,由于像素值是8位表示的,在刚才的计算过程中会使用64位进行存储,因此还需要对图像的像素值进行一下转换一下

复制代码
img = cv2.convertScaleAbs(img)
plt.hist(img.ravel(), bins=256)
plt.title('myEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('myEqualize')
plt.show()  # 均衡化灰度图

衡化后的图像的直方图如图所示,其中左图为OpenCV库函数均衡化的效果,右图是我们手动实现均衡化的效果,可见都达到了将原图的像素值均匀分开的效果

均衡化后的图像如图所示,其中左图为OpenCV库函数均衡化的效果,右图是我们手动实现均衡化的效果,可知二者效果基本相同,与原图相比,均衡化后的图像对比度提高了,其中云层增加了更多的细节,看起来更清晰了一些

完整代码如下

复制代码
import matplotlib.pyplot as plt
import cv2
import numpy

img = cv2.imread("OIP.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
cdf = hist.cumsum()
mapPixel = 255 * cdf / cdf[-1]
img = numpy.interp(img.ravel(), range(256), mapPixel).reshape(img.shape)
img = cv2.convertScaleAbs(img)
plt.hist(img.ravel(), bins=256)
plt.title('myEqualize')
plt.show()  # 均衡化直方图
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.title('myEqualize')
plt.show()  # 均衡化灰度图
相关推荐
MM_MS27 分钟前
Halcon图像采集助手、ROI操作和画图、ROI实现区域与轮廓之间的相互转换、区域的交集差集取反
图像处理·人工智能·数码相机·算法·目标检测·计算机视觉·视觉检测
莫非王土也非王臣29 分钟前
网页端的TensorFlow开发实践
人工智能·python·tensorflow
喵手33 分钟前
Python爬虫零基础入门【第七章:动态页面入门(Playwright)·第3节】优先 API:用 Network 找接口,回到 Requests(更稳定)!
爬虫·python·playwright·python爬虫实战·python爬虫工程化实战·python爬虫零基础入门·优先 api
浩瀚之水_csdn36 分钟前
avformat_alloc_context详解
计算机视觉
我送炭你添花42 分钟前
Pelco KBD300A 模拟器:12.设备仿真与虚拟响应生成
python·自动化·运维开发
一晌小贪欢1 小时前
深入解析 Python 3.11 版本迭代:性能飞跃与更优雅的错误处理
python·python基础·python3·python3.11·python小白
大熊背1 小时前
根据单张图像检测动态范围大小
图像处理·人工智能·计算机视觉
理智.6291 小时前
根据requirements.txt 完成环境中的依赖库导入
python·conda·pip
Blossom.1181 小时前
用纯 NLP 打造「零样本」时序预测模型:文本化序列 + LLM 的实战路线
人工智能·python·深度学习·机器学习·自然语言处理·架构·transformer
小二·1 小时前
Python Web 开发进阶实战:AI 编排引擎 —— 在 Flask + Vue 中构建低代码机器学习工作流平台
前端·人工智能·python