K. Kingdom‘s Power,树形dp

Problem - K - Codeforces

time limit per test

2.0 s

memory limit per test

512 megabytes

input

standard input

output

standard output

Alex is a professional computer game player.

These days, Alex is playing a war strategy game. The kingdoms in the world form a rooted tree. Alex's kingdom 1 is the root of the tree. With his great diplomacy and leadership, his kingdom becomes the greatest empire in the world. Now, it's time to conquer the world!

Alex has almost infinite armies, and all of them are located at 1 initially. Every week, he can command one of his armies to move one step to an adjacent kingdom. If an army reaches a kingdom, that kingdom will be captured by Alex instantly.

Alex would like to capture all the kingdoms as soon as possible. Can you help him?

Input

The first line of the input gives the number of test cases, T (1≤T≤105). T test cases follow.

For each test case, the first line contains an integer n (1≤n≤106), where n is the number of kingdoms in the world.

The next line contains (n−1)integers f2,f3,⋯,fn (1≤fi<i), representing there is a road between fiand i.

The sum of n in all test cases doesn't exceed 5×106.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1), and y is the minimum time to conquer the world.

Example

input

Copy

复制代码
2
3
1 1
6
1 2 3 4 4

output

Copy

复制代码
Case #1: 2
Case #2: 6

解析:

题意:

1号节点为根节点,根节点的军队数量是无线的,从根节点开始派兵,一次走一步,走遍所有的节点,需要多少步。

性质:若一棵子树都多个子树,这先走深度小的子树再走深度深的子树,是最优的;同时还要考虑是从一棵子树返回来走向另一棵子树还是从根节点派兵走

所以先dfs一次找出所有的节点的deep,再dfs找出最终答案;

具体见代码:(这道树形dp感觉跟dp没什么关系)

cpp 复制代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
const int N = 1e6 + 5;
int n;
vector<pair<int, int>>G[N];
int deep[N];
LL ans;
int d = 0, flg = 0;

int dfs(int x,int fa) {
	deep[x] = deep[fa] + 1;
	if (G[x].size() == 0)return 1;
	for (int i = 0; i < G[x].size(); i++) {
		int j = G[x][i].second;
		int& v = G[x][i].first;
		v=dfs(j, x);
	}
	sort(G[x].begin(), G[x].end());
	return G[x].back().first + 1;
}

void dfs1(int x,int fa) {
	if (G[x].size() == 0) {
		if (flg == 0)ans += deep[x];
		else {
			ans += min(deep[x], d);
		}
		flg = 1;
		d = 0;
		return ;
	}
	for (int i = 0; i < G[x].size(); i++) {
		int j = G[x][i].second;
		d++;
		dfs1(j, x);
		d++;
	}
}
int main() {
	int T,cnt=0;
	scanf("%d", &T);
	while (T--) {
		cnt++;
		scanf("%d", &n);
		for (int i = 0; i <= n; i++)
			G[i].clear();
		for (int i = 2,a; i <= n; i++) {
			scanf("%d", &a);
			G[a].push_back({ 0,i });
		}
		deep[0] = -1;
		dfs(1,0);
		flg = 0, d = 0, ans = 0;
		dfs1(1,0);
		printf("Case #%d: %lld\n",cnt, ans);
	}
	return 0;
}
相关推荐
weixin_3077791332 分钟前
软件演示环境动态扩展与成本优化:基于目标跟踪与计划扩展的AWS Auto Scaling策略
算法·云原生·云计算·aws
Carl_奕然32 分钟前
【机器视觉】一文掌握常见图像增强算法。
人工智能·opencv·算法·计算机视觉
放羊郎33 分钟前
人工智能算法优化YOLO的目标检测能力
人工智能·算法·yolo·视觉slam·建图
无敌最俊朗@1 小时前
友元的作用与边界
算法
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 104: 通配符匹配
linux·数据结构·算法·leetcode·深度优先·动态规划
程序员东岸2 小时前
从零开始学二叉树(上):树的初识 —— 从文件系统到树的基本概念
数据结构·经验分享·笔记·学习·算法
甄心爱学习2 小时前
数据挖掘11-分类的高级方法
人工智能·算法·分类·数据挖掘
爪哇部落算法小助手3 小时前
每日两题day44
算法
不穿格子的程序员4 小时前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找
Kuo-Teng5 小时前
LeetCode 19: Remove Nth Node From End of List
java·数据结构·算法·leetcode·链表·职场和发展·list