LeetCode 面试题 08.14. 布尔运算

文章目录

一、题目

给定一个布尔表达式和一个期望的布尔结果 result,布尔表达式由 0 (false)、1 (true)、& (AND)、 | (OR) 和 ^ (XOR) 符号组成。实现一个函数,算出有几种可使该表达式得出 result 值的括号方法。

示例 1:

输入: s = "1^0|0|1", result = 0

输出: 2

解释: 两种可能的括号方法是

1^(0|(0|1))

1^((0|0)|1)

示例 2:

输入: s = "0&0&0&1^1|0", result = 1

输出: 10

提示:

  • 运算符的数量不超过 19 个

点击此处跳转题目

二、C# 题解

这道题的主要问题在于思路,即如何将括号方法进行计算机表示。括号表示优先结合,具体如下:

∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗ \begin{array}{c} \ *\ |\ *\ *\ *\ *\\ \ *\ *\ |\ *\ *\ *\\ \ *\ *\ *\ |\ *\ *\\ \ *\ *\ *\ *\ |\ * \end{array} ∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗ ∗ ∗ ∗ ∗ ∗ ∣ ∗

求解左右两部分的值,依据运算符 '|' 计算并返回结果,最终得到答案。

使用 dp 二维数组存储动态规划结果,每个元素 dp[i, j](记为 elem)为长度为 2 的一维数组,elem[0] 表示表达式 i ~ j 计算得到 0 的方法数,elem[1] 表示计算得到 1 的方法数。具体代码如下:

csharp 复制代码
public class Solution {
    public int CountEval(string s, int result) {
        int      n = s.Length / 2 + 1;   // s 中数字的个数
        int[]    nums = new int[n];      // 存储 s 中的数字
        int[,][] dp   = new int[n, n][]; // dp 数组,dp[i, j][k] 存储长度为 i~j 的表达式计算出结果 k 的方法数
        for (int i = 0; i < n; i++) {
            if (s[i * 2] == '1') nums[i] = 1;                  // 初始化 nums
            for (int j = 0; j < n; j++) dp[i, j] = new int[2]; // 初始化 dp
        }
        Partition(dp, nums, s, 0, nums.Length - 1);

        return dp[0, nums.Length - 1][result];
    }

    // 递归求解
    public int[] Partition(int[,][] dp, int[] nums, string s, int i, int j) {
        if (i == j) { // 递归出口
            dp[i, j][nums[i]]++;
            return dp[i, j];
        }
        int[] ans = dp[i, j];
        for (int k = i; k < j; k++) {
            // 取出左右两边的计算结果和运算符,如果结果为 0,则重新计算
            int[] left  = dp[i, k][0] + dp[i, k][1] == 0 ? Partition(dp, nums, s, i, k) : dp[i, k];
            int[] right = dp[k + 1, j][0] + dp[k + 1, j][1] == 0 ? Partition(dp, nums, s, k + 1, j) : dp[k + 1, j];
            char  op    = s[k * 2 + 1];

            // 合并结果
            ans[Calc(0, 0, op)] += left[0] * right[0];
            ans[Calc(0, 1, op)] += left[0] * right[1];
            ans[Calc(1, 0, op)] += left[1] * right[0];
            ans[Calc(1, 1, op)] += left[1] * right[1];
        }

        return ans;
    }

    // 计算 a op b 的值
    public int Calc(int a, int b, char op) {
        return op switch {
            '^' => a ^ b,
            '&' => a & b,
            '|' => a | b
        };
    }
}
  • 时间:56 ms,击败 100.00% 使用 C# 的用户
  • 内存:34.93 MB,击败 100.00% 使用 C# 的用户
相关推荐
Rose 使者1 小时前
全球IP归属地查询接口如何用C#进行调用?
c#·api·ip地址
Magnum Lehar1 小时前
vulkan游戏引擎test_manager实现
java·算法·游戏引擎
水蓝烟雨2 小时前
[面试精选] 0094. 二叉树的中序遍历
算法·面试精选
超闻逸事2 小时前
【题解】[UTPC2024] C.Card Deck
c++·算法
暴力求解2 小时前
C++类和对象(上)
开发语言·c++·算法
JKHaaa2 小时前
几种简单的排序算法(C语言)
c语言·算法·排序算法
让我们一起加油好吗2 小时前
【基础算法】枚举(普通枚举、二进制枚举)
开发语言·c++·算法·二进制·枚举·位运算
FogLetter3 小时前
微信红包算法揭秘:从随机性到产品思维的完美结合
算法
~plus~3 小时前
Harmony核心:动态方法修补与.NET游戏Mod开发
开发语言·jvm·经验分享·后端·程序人生·c#
BUG收容所所长3 小时前
二分查找的「左右为难」:如何优雅地找到数组中元素的首尾位置
前端·javascript·算法