详解cv2.addWeighted函数【使用 OpenCV 添加(混合)两个图像-Python版本】

文章目录

简介

有的时候我们需要将两张图片在alpha通道进行混合,比如深度学习数据集增强方式MixUp。OpenCV的addWeighted提供了相关操作,瓷片博客将详细介绍这个函数,并给出代码示例。🚀🚀

函数原型

o u t p u t I m g = s a t u r a t e ( α ∗ i n p u t I m g 1 + β ∗ i n p u t I m g 2 + γ ) \rm outputImg=saturate( \alpha*inputImg1+ \beta*inputImg2 + \gamma) outputImg=saturate(α∗inputImg1+β∗inputImg2+γ)

python 复制代码
cv.addWeighted(	src1, alpha, src2, beta, gamma[, dst[, dtype]]	) -> dst
参数 说明
src1 图片1
alpha 图片1的权重
src2 图片2
beta 图片2的权重
gamma 添加到每个总和的标量。一般为0
dst 输出图片,Python版本不需要指定👎
dtype 输出数组的可选深度,默认即可

代码示例

python 复制代码
import cv2
import matplotlib.pyplot as plt

# 加载两张图片
img1 = cv2.imread(filename="Lenna.png")
img2 = cv2.imread(filename="horses.jpg")

# 将两张图片都调整到640*640
shape1 = img1.shape  # HWC
shape2 = img2.shape  # HWC
max1 = max(shape1[0], shape1[1])
max2 = max(shape2[0], shape2[1])
img1 = cv2.copyMakeBorder(
    src=img1,
    top=int((max1 - shape1[0])/2),
    bottom=int((max1 - shape1[0])/2),
    left=int((max1 - shape1[1])/2),
    right=int((max1 - shape1[1])/2),
    borderType=cv2.BORDER_REFLECT101,
)
img1 = cv2.resize(src=img1, dsize=(640, 640), interpolation=cv2.INTER_LINEAR)
img2 = cv2.copyMakeBorder(
    src=img2,
    top=int((max2 - shape2[0])/2),
    bottom=int((max2 - shape2[0])/2),
    left=int((max2 - shape2[1])/2),
    right=int((max2 - shape2[1])/2),
    borderType=cv2.BORDER_REFLECT101,
)
img2 = cv2.resize(src=img2, dsize=(640, 640), interpolation=cv2.INTER_LINEAR)

# 按照比例将两张图片进行混合
alpha = 0.5
beta = 1.0 - alpha
img_blending = cv2.addWeighted(src1=img1, alpha=alpha, src2=img2, beta=beta, gamma=.0)

# 绘制图片
fig = plt.figure(figsize=(9, 3))
fig.suptitle(t="Blend two images")

ax1 = fig.add_subplot(1, 3, 1)
ax2 = fig.add_subplot(1, 3, 2)
ax3 = fig.add_subplot(1, 3, 3)

ax1.set_title(label="image1")
ax1.spines["top"].set_visible(b=False)
ax1.spines["bottom"].set_visible(b=False)
ax1.spines["left"].set_visible(b=False)
ax1.spines["right"].set_visible(b=False)
ax1.axes.xaxis.set_visible(b=False)
ax1.axes.yaxis.set_visible(b=False)
ax1.imshow(X=cv2.cvtColor(src=img1, code=cv2.COLOR_BGR2RGB))

ax2.set_title(label="image2")
ax2.spines["top"].set_visible(b=False)
ax2.spines["bottom"].set_visible(b=False)
ax2.spines["left"].set_visible(b=False)
ax2.spines["right"].set_visible(b=False)
ax2.axes.xaxis.set_visible(b=False)
ax2.axes.yaxis.set_visible(b=False)
ax2.imshow(X=cv2.cvtColor(src=img2, code=cv2.COLOR_BGR2RGB))

ax3.set_title(label="blending image")
ax3.spines["top"].set_visible(b=False)
ax3.spines["bottom"].set_visible(b=False)
ax3.spines["left"].set_visible(b=False)
ax3.spines["right"].set_visible(b=False)
ax3.axes.xaxis.set_visible(b=False)
ax3.axes.yaxis.set_visible(b=False)
ax3.imshow(X=cv2.cvtColor(src=img_blending, code=cv2.COLOR_BGR2RGB))

plt.show()

参考资料

  1. Computer Vision: Algorithms and Applications
  2. OpenCV文档:Adding (blending) two images using OpenCV👍
  3. OpenCV文档:addWeighted() 🚀

收集整理和创作不易, 若有帮助🉑, 请帮忙点赞👍➕收藏❤️, 谢谢!✨✨🚀🚀

相关推荐
woshihonghonga3 小时前
Jupyter Notebook模块导入错误排查
人工智能
B站计算机毕业设计之家4 小时前
智慧交通项目:Python+PySide6 车辆检测系统 YOLOv8+OpenCV 自定义视频 自定义检测区域 (源码+文档)✅
大数据·python·opencv·yolo·智慧交通·交通·车流量
ting_zh4 小时前
PyTorch、TensorFlow、JAX 简介
人工智能·pytorch·tensorflow
java1234_小锋4 小时前
TensorFlow2 Python深度学习 - 深度学习概述
python·深度学习·tensorflow·tensorflow2·python深度学习
数据与人工智能律师5 小时前
AI的法治迷宫:技术层、模型层、应用层的法律痛点
大数据·网络·人工智能·云计算·区块链
椒颜皮皮虾྅5 小时前
【DeploySharp 】基于DeploySharp 的深度学习模型部署测试平台:安装和使用流程
人工智能·深度学习·开源·c#·openvino
迈火5 小时前
PuLID_ComfyUI:ComfyUI中的图像生成强化插件
开发语言·人工智能·python·深度学习·计算机视觉·stable diffusion·语音识别
AI新兵7 小时前
AI大事记10:从对抗到创造——生成对抗网络 (GANs)
人工智能·神经网络·生成对抗网络
却道天凉_好个秋7 小时前
深度学习(十五):Dropout
人工智能·深度学习·dropout
你好~每一天7 小时前
2025 中小企业 AI 转型:核心岗技能 “怎么证、怎么用”?
人工智能·百度·数据挖掘·数据分析·职业·转行