详解cv2.addWeighted函数【使用 OpenCV 添加(混合)两个图像-Python版本】

文章目录

简介

有的时候我们需要将两张图片在alpha通道进行混合,比如深度学习数据集增强方式MixUp。OpenCV的addWeighted提供了相关操作,瓷片博客将详细介绍这个函数,并给出代码示例。🚀🚀

函数原型

o u t p u t I m g = s a t u r a t e ( α ∗ i n p u t I m g 1 + β ∗ i n p u t I m g 2 + γ ) \rm outputImg=saturate( \alpha*inputImg1+ \beta*inputImg2 + \gamma) outputImg=saturate(α∗inputImg1+β∗inputImg2+γ)

python 复制代码
cv.addWeighted(	src1, alpha, src2, beta, gamma[, dst[, dtype]]	) -> dst
参数 说明
src1 图片1
alpha 图片1的权重
src2 图片2
beta 图片2的权重
gamma 添加到每个总和的标量。一般为0
dst 输出图片,Python版本不需要指定👎
dtype 输出数组的可选深度,默认即可

代码示例

python 复制代码
import cv2
import matplotlib.pyplot as plt

# 加载两张图片
img1 = cv2.imread(filename="Lenna.png")
img2 = cv2.imread(filename="horses.jpg")

# 将两张图片都调整到640*640
shape1 = img1.shape  # HWC
shape2 = img2.shape  # HWC
max1 = max(shape1[0], shape1[1])
max2 = max(shape2[0], shape2[1])
img1 = cv2.copyMakeBorder(
    src=img1,
    top=int((max1 - shape1[0])/2),
    bottom=int((max1 - shape1[0])/2),
    left=int((max1 - shape1[1])/2),
    right=int((max1 - shape1[1])/2),
    borderType=cv2.BORDER_REFLECT101,
)
img1 = cv2.resize(src=img1, dsize=(640, 640), interpolation=cv2.INTER_LINEAR)
img2 = cv2.copyMakeBorder(
    src=img2,
    top=int((max2 - shape2[0])/2),
    bottom=int((max2 - shape2[0])/2),
    left=int((max2 - shape2[1])/2),
    right=int((max2 - shape2[1])/2),
    borderType=cv2.BORDER_REFLECT101,
)
img2 = cv2.resize(src=img2, dsize=(640, 640), interpolation=cv2.INTER_LINEAR)

# 按照比例将两张图片进行混合
alpha = 0.5
beta = 1.0 - alpha
img_blending = cv2.addWeighted(src1=img1, alpha=alpha, src2=img2, beta=beta, gamma=.0)

# 绘制图片
fig = plt.figure(figsize=(9, 3))
fig.suptitle(t="Blend two images")

ax1 = fig.add_subplot(1, 3, 1)
ax2 = fig.add_subplot(1, 3, 2)
ax3 = fig.add_subplot(1, 3, 3)

ax1.set_title(label="image1")
ax1.spines["top"].set_visible(b=False)
ax1.spines["bottom"].set_visible(b=False)
ax1.spines["left"].set_visible(b=False)
ax1.spines["right"].set_visible(b=False)
ax1.axes.xaxis.set_visible(b=False)
ax1.axes.yaxis.set_visible(b=False)
ax1.imshow(X=cv2.cvtColor(src=img1, code=cv2.COLOR_BGR2RGB))

ax2.set_title(label="image2")
ax2.spines["top"].set_visible(b=False)
ax2.spines["bottom"].set_visible(b=False)
ax2.spines["left"].set_visible(b=False)
ax2.spines["right"].set_visible(b=False)
ax2.axes.xaxis.set_visible(b=False)
ax2.axes.yaxis.set_visible(b=False)
ax2.imshow(X=cv2.cvtColor(src=img2, code=cv2.COLOR_BGR2RGB))

ax3.set_title(label="blending image")
ax3.spines["top"].set_visible(b=False)
ax3.spines["bottom"].set_visible(b=False)
ax3.spines["left"].set_visible(b=False)
ax3.spines["right"].set_visible(b=False)
ax3.axes.xaxis.set_visible(b=False)
ax3.axes.yaxis.set_visible(b=False)
ax3.imshow(X=cv2.cvtColor(src=img_blending, code=cv2.COLOR_BGR2RGB))

plt.show()

参考资料

  1. Computer Vision: Algorithms and Applications
  2. OpenCV文档:Adding (blending) two images using OpenCV👍
  3. OpenCV文档:addWeighted() 🚀

收集整理和创作不易, 若有帮助🉑, 请帮忙点赞👍➕收藏❤️, 谢谢!✨✨🚀🚀

相关推荐
Shawn_Shawn3 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步5 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like5 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a5 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴5 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再5 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
腾讯云开发者6 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗6 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
喵手7 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控