Hadoop3教程(九):MapReduce框架原理概述

文章目录

简介

这属于整个MR中最核心的一块,后续小节会展开描述。

整个MR处理流程,是分为Map阶段和Reduce阶段。

一般,我们称Map阶段的进程是MapTask,称Reduce阶段是ReduceTask。

其完整的工作流程如图:

Map阶段具体的工作任务是啥呢?

1) map阶段决定,根据数据源,可以选择根据什么方式来读取数据;

默认情况下,map阶段读数据,是按行读,读取到的KV里,K是偏移量(可以理解成行数),V是这一行的内容。那map阶段是不是只能这么行读呢?

不是。

这里就要介绍一个组件,叫做InputFormat,它就是用来控制数据的读取形式。

Hadoop中的InputFormat有好几种实现,如FileInputFormat、TextInputFormat和CombineTextInputFormat等。

2) 数据在被读进来之后,就会交给Mapper来进行自定义业务逻辑的处理;

3)接着进行shuffle ,这是一个非常复杂的过程,可以在这里进行排序、分区、压缩、合并等等, 堪称MapReduce中最核心的环节。

最后进入reduce阶段 ,也有一个组件,叫做OutputFormat,用来控制数据的输出形式。同样的,它也有好几种实现,默认的OutputFormat是把数据写进文件里,那我想写进数据库里,可不可以呢?

当然可以,自定义OutputFormat就可以。

接下来的几节就会围绕这个流程做展开讲述:

  • InputFormat
  • Shuffle机制
  • OutputFormat
  • Join应用

参考文献

  1. 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】
相关推荐
Elastic 中国社区官方博客7 小时前
使用真实 Elasticsearch 进行高级集成测试
大数据·数据库·elasticsearch·搜索引擎·全文检索·jenkins·集成测试
好记性+烂笔头7 小时前
4 Spark Streaming
大数据·ajax·spark
想做富婆8 小时前
Hive:窗口函数[ntile, first_value,row_number() ,rank(),dens_rank()]和自定义函数
数据仓库·hive·hadoop
好记性+烂笔头11 小时前
3 Flink 运行架构
大数据·架构·flink
字节侠11 小时前
Flink2支持提交StreamGraph到Flink集群
大数据·flink·streamgraph·flink2·jobgraph
好记性+烂笔头14 小时前
4 Hadoop 面试真题
大数据·hadoop·面试
好记性+烂笔头15 小时前
10 Flink CDC
大数据·flink
赵渝强老师17 小时前
【赵渝强老师】Spark RDD的依赖关系和任务阶段
大数据·缓存·spark
小小のBigData17 小时前
【2025年更新】1000个大数据/人工智能毕设选题推荐
大数据·人工智能·课程设计
risc12345618 小时前
【Elasticsearch 】悬挂索引(Dangling Indices)
大数据·elasticsearch·搜索引擎