es大页读取

问题

在 Elasticsearch 中处理大数据集的分页查询(通常称为"大页查询"或"深度分页")时,需要特别谨慎,因为不当的操作可能会对集群性能产生显著影响,Elasticsearch 提供了几种不同的方案,每种都有其适用的场景和注意事项。

为了让你能快速了解这几种核心方案的特点,我准备了一个对比表格:

名称 原理 场景 优点 缺点与注意
From/Size (浅分页) 类似 SQL 的 LIMIT offset, size。每个分片返回 from+size 条数据,协调节点汇总排序后返回指定范围。 浅页跳页查询(通常建议在 10,000 条数据以内)。 使用简单直观 支持随机跳页。 深度分页时性能差,默认有 index.max_result_window 限制(10,000条)
Scroll (游标查询) 创建搜索上下文快照,每次基于 scroll_id 获取下一批结果。 深度遍历大量数据(如数据导出 离线处理)。 适合获取大量数据 不适用于实时查询(数据是快照);消耗资源且需手动清理;不支持跳页
Search After (查找后) 基于上一页最后一条结果的排序值进行查询。 实时深度分页(需连续翻页)。 实时性高;性能好于 From/Size 和 Scroll 不支持随机跳页;需要唯一且稳定的排序字段

如何选择分页方案

选择哪种方案,主要取决于你的具体需求:

  • 如果你需要进行深度分页(超过10,000条数据),Search After 通常是进行实时查询的首选。它有效地避免了 From/Size 的性能瓶颈和 Scroll 的非实时性问题。
  • 如果你的场景是数据导出、全量索引或离线分析,需要顺序遍历大量数据而不关心数据的实时变更,那么 Scroll 查询更为合适。
  • 切记,常规的 From/Size 分页仅适用于浅分页(如前几百页)的场景。强行修改 max_result_window 来获取更深的数据,虽然技术上可行,但会给集群带来巨大的性能和稳定性风险。

核心方案使用指南

  1. 首次查询,需要设置一个唯一的、稳定的排序字段组合(例如时间戳加上文档ID)
go 复制代码
GET /my_index/_search
{
  "size": 10,
  "sort": [
    {"timestamp": "desc"},
    {"_id": "asc"}
  ],
  "query": {
    "match_all": {}
  }
}
  1. 后续查询:使用上一次查询结果中最后一条文档的 sort 值作为 search_after 参数。
go 复制代码
GET /my_index/_search
{
  "size": 10,
  "sort": [
    {"timestamp": "desc"},
    {"_id": "asc"}
  ],
  "search_after": [1643012560000, "abc123"],
  "query": {
    "match_all": {}
  }
}

Scroll (适用于大数据量导出)

  1. 初始化滚动查询:指定 scroll 参数来设置搜索上下文的存活时间
go 复制代码
GET /my_index/_search?scroll=5m
{
  "size": 100,
  "query": {
    "match_all": {}
  }
}
  1. 获取后续结果:使用返回的 _scroll_id 来请求下一批结果
go 复制代码
GET /_search/scroll
{
  "scroll": "5m",
  "scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAJZ9Fnk1d......"
}
  1. 清理滚动上下文:使用完毕后,务必手动删除 scroll_id 以释放资源
go 复制代码
DELETE _search/scroll/DnF1ZXJ5VGhlbkZldGNo.....

调整 From/Size 限制 (谨慎使用)

如果确实需要临时突破 From/Size 的默认限制,可以修改索引设置,但请充分评估风险

go 复制代码
PUT /my_index/_settings
{
  "index.max_result_window": 50000
}
相关推荐
会飞的老朱13 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
AI_567818 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw18 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe18 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥18 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿19 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿19 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊12120 小时前
已有安全措施确认(上)
大数据·网络
人道领域21 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_124987075321 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计