Flash-Attention

这是一篇硬核的优化Transformer的工作。众所周知,Transformer模型的计算量和储存复杂度是 O ( N 2 ) O(N^2) O(N2) 。尽管先前有了大量的优化工作,比如LongFormer、Sparse Transformer、Reformer等等,一定程度上减轻了Transformer的资源消耗,但对Transformer的性能有所折损,且扩展性不强,不能泛化到其它领域、以及复杂结构的叠加。

这篇工作从底层对Transformer的计算和读写进行了优化,主要有三个贡献:

  1. 加速了模型计算:现在GPU的计算速度已经远远超过了内存读写速度,当GPU完成计算后,内存确还在读取数据,造成GPU闲置而内存繁忙读(消费者早就消费完了,生产者还在缓慢生产)的现象,也就是内存墙问题。FlashAttention通过tiling和算子融合计算,将复杂操作放到SRAM中计算,并减少从HBM读取次数,加快了模型计算速度。而之前的工作虽然减少了Transformer的计算复杂度,却并没有减少模型计算时间。
  2. 节省了显存:FlashAttention通过引入全局统计量,避免实例化大注意力矩阵,减少了显存占用。
  3. 精确注意力:FlashAttention从底层优化了Transformer的计算,但是任务指标上没有任何折损,与普通的Transformer结果是完全等价。

现代GPU内存分级


参考

相关推荐
小白狮ww4 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
组合缺一5 小时前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp
ASS-ASH1 天前
AI时代之向量数据库概览
数据库·人工智能·python·llm·embedding·向量数据库·vlm
带刺的坐椅1 天前
用 10 行 Java8 代码,开发一个自己的 ClaudeCodeCLI?你信吗?
java·ai·llm·agent·solon·mcp·claudecode·skills
aopstudio1 天前
OpenClaw 实测体验:Agent 框架现在到底能不能用?
人工智能·llm·agent·openclaw
千桐科技2 天前
qKnow 知识平台核心能力解析|第 03 期:结构化抽取能力全流程介绍
大模型·llm·知识图谱·知识库·rag·qknow·知识平台
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-02-04)
开源·大模型·llm·github·ai教程
gr17852 天前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
EdisonZhou3 天前
MAF快速入门(14)快速集成A2A Agent
llm·agent·.net core
gentle coder3 天前
【langchain】AI应用开发框架
langchain·llm·rag