Flash-Attention

这是一篇硬核的优化Transformer的工作。众所周知,Transformer模型的计算量和储存复杂度是 O ( N 2 ) O(N^2) O(N2) 。尽管先前有了大量的优化工作,比如LongFormer、Sparse Transformer、Reformer等等,一定程度上减轻了Transformer的资源消耗,但对Transformer的性能有所折损,且扩展性不强,不能泛化到其它领域、以及复杂结构的叠加。

这篇工作从底层对Transformer的计算和读写进行了优化,主要有三个贡献:

  1. 加速了模型计算:现在GPU的计算速度已经远远超过了内存读写速度,当GPU完成计算后,内存确还在读取数据,造成GPU闲置而内存繁忙读(消费者早就消费完了,生产者还在缓慢生产)的现象,也就是内存墙问题。FlashAttention通过tiling和算子融合计算,将复杂操作放到SRAM中计算,并减少从HBM读取次数,加快了模型计算速度。而之前的工作虽然减少了Transformer的计算复杂度,却并没有减少模型计算时间。
  2. 节省了显存:FlashAttention通过引入全局统计量,避免实例化大注意力矩阵,减少了显存占用。
  3. 精确注意力:FlashAttention从底层优化了Transformer的计算,但是任务指标上没有任何折损,与普通的Transformer结果是完全等价。

现代GPU内存分级


参考

相关推荐
小杨互联网12 小时前
LLM应用三大隐形风险与防护方案详解
llm
小汤圆不甜不要钱16 小时前
「Datawhale」RAG技术全栈指南 Task 5
python·llm·rag
五点钟科技17 小时前
Deepseek-OCR:《DeepSeek-OCR: Contexts Optical Compression》 论文要点解读
人工智能·llm·ocr·论文·大语言模型·deepseek·deepseek-ocr
AndrewHZ19 小时前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
山顶夕景1 天前
【LLM】多模态智能体Kimi-K2.5模型
llm·agent·多模态
JTnnnnn1 天前
【架構優化】拒絕 LLM 幻覺:設計基於 Python 路由的 AntV 智慧圖表生成系統
llm·antv·dify
AndrewHZ1 天前
【AI黑话日日新】什么是skills?
语言模型·大模型·llm·claude code·skills
国家一级假勤奋大学生1 天前
InternVL系列 technical report 解析
大模型·llm·vlm·mllm·internvl·调研笔记
缘友一世2 天前
张量并行和流水线并行原理深入理解与思考
学习·llm·pp·tp
小白狮ww2 天前
Ovis-Image:卓越的图像生成模型
人工智能·深度学习·目标检测·机器学习·cpu·gpu·视觉分割模型