2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
Pyeako3 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
哥布林学者4 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(四)分层 softmax 和负采样
深度学习·ai
虹科网络安全4 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
70asunflower5 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类
Hcoco_me6 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML6 小时前
第九章:EM 算法
人工智能·算法·机器学习
q_35488851536 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao6 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
不解风水8 小时前
《深度学习入门:基于 Python 的理论与实现》(斋藤康毅)
人工智能·python·深度学习
brent4238 小时前
DAY54 CBAM注意力
人工智能·深度学习·机器学习