2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
翱翔的苍鹰28 分钟前
神经网络中损失函数(Loss Function)介绍
人工智能·深度学习·神经网络
元智启44 分钟前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
Hcoco_me2 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
向量引擎小橙2 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错2 小时前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
高洁014 小时前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
AI科技星5 小时前
时空几何:张祥前统一场论20核心公式深度总结
人工智能·线性代数·算法·机器学习·生活
咋吃都不胖lyh6 小时前
Haversine 距离算法详解(零基础友好版)
线性代数·算法·机器学习
soldierluo6 小时前
向量与向量数据
人工智能·算法·机器学习
Hcoco_me6 小时前
大模型面试题71: DPO有什么缺点?后续对DPO算法有哪些改进?
人工智能·深度学习·算法·自然语言处理·transformer·vllm