2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
神齐的小马5 小时前
机器学习 [白板推导](十三)[条件随机场]
人工智能·机器学习
@Wufan6 小时前
【机器学习】7 Linear regression
人工智能·机器学习·线性回归
tainshuai6 小时前
从零开始理解 K 均值聚类:原理、实现与应用
机器学习·均值算法·聚类
明月照山海-8 小时前
机器学习周报十
深度学习·机器学习·cnn
@Wufan8 小时前
【机器学习】10 Directed graphical models (Bayes nets)
人工智能·机器学习
我找到地球的支点啦8 小时前
Matlab系列(005) 一 归一化
人工智能·机器学习·matlab·信息与通信
ygy.白茶8 小时前
线性回归入门级
人工智能·python·机器学习
@Wufan8 小时前
【机器学习】9 Generalized linear models and the exponential family
人工智能·机器学习
遥感-GIS8 小时前
遥感时序分析的基石:深度剖析Harmonized Landsat Sentinel-2 (HLS) 数据集的诞生、原理、特点与应用
机器学习·时序分析·hls·数据融合·landsat·sentinel-2
Fine姐10 小时前
数据挖掘 4.1~4.7 机器学习性能评估参数
人工智能·机器学习·数据挖掘