2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
Teacher.chenchong1 小时前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ1 小时前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI1 小时前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
lucky_lyovo1 小时前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5282 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
静心问道2 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶2 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
石迹耿千秋7 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Wendy144110 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归