2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
熊猫钓鱼>_>几秒前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
祝余Eleanor14 分钟前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮14 分钟前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
Element_南笙1 小时前
吴恩达新课程:Agentic AI(笔记11)
大数据·人工智能·笔记·算法·机器学习
ziwu1 小时前
【车型识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·深度学习·图像识别
B站_计算机毕业设计之家3 小时前
python招聘数据 求职就业数据可视化平台 大数据毕业设计 BOSS直聘数据可视化分析系统 Flask框架 Echarts可视化 selenium爬虫技术✅
大数据·python·深度学习·考研·信息可视化·数据分析·flask
熊猫钓鱼>_>3 小时前
TensorFlow深度学习框架入门浅析
深度学习·神经网络·tensorflow·neo4j·张量·训练模型·评估模型
玩具猴_wjh3 小时前
线性规划核心知识点
人工智能·机器学习
科学最TOP3 小时前
IJCAI25|如何平衡文本与时序信息的融合适配?
人工智能·深度学习·神经网络·机器学习·时间序列
双翌视觉4 小时前
机器视觉赋能平板电脑OCA真空全贴合,精度、效率与智能化的三重飞跃
人工智能·机器学习·电脑