2022最新版-李宏毅机器学习深度学习课程-P17 卷积神经网络CNN

一、CNN 用于图像分类

需要图片大小统一

彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

图像识别中不需要全连接的,参数太多了

观测1:通过判断多个小局部图像就能判断出图片标签

感受野的定义

简化1

  • 感受野可以重叠;
  • 同一感受野可以通过不同的权重

典型设置

观测2:相同部分出现在不同区域

简化2

共享参数

典型设置

引入filter的概念,实质是同一套权重

卷积的优势

  • 有些要素比整张图片小的多
  • 同一要素可能会出现在不同区域

二、另一角度切入

卷积层

多次经过卷积层

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

三、两种介绍的对比

分享的权重其实就是filter

卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

观测3:截出主要元素不会改变标签

引入池化层

每次选出一个作为代表

MAX pooling:每个区域选出最大的作为代表

四、CNN全过程总结

五、应用:下围棋

每个棋子有48个channel,代表48个状态

CNN为啥能用于下围棋?因为他们的这两点特征相似

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

相关推荐
AI营销先锋13 小时前
原圈科技领跑破解B2B增长焦虑
大数据·人工智能·机器学习
2501_9421917713 小时前
纺织品微观缺陷检测与分类:基于Faster R-CNN的改进模型实现与性能优化_1
分类·r语言·cnn
程序员:钧念13 小时前
【sh脚本与Python脚本的区别】
开发语言·人工智能·python·机器学习·语言模型·自然语言处理·transformer
明月醉窗台13 小时前
深度学习(16)YOLO中的置信度和IOU阈值在训练中及推理中后处理结果的影响
人工智能·深度学习·yolo
victory043113 小时前
深度学习的核心求梯度就是多维函数求导数
人工智能·深度学习
2501_9414185513 小时前
【深度学习】实战分享 _ 基于YOLO11-seg的显微手术针操作行为识别研究
人工智能·深度学习
Ulyanov14 小时前
PyVista战场可视化实战(三):雷达与目标轨迹可视化
开发语言·人工智能·python·机器学习·系统架构·tkinter·gui开发
wxdlfkj14 小时前
基于LTP高精度激光位移传感与自适应图像处理的零部件表面微损伤非接触检测系统解决方案
人工智能·深度学习·计算机视觉
深度之眼14 小时前
Nature:物理信息深度学习前沿创新思路
人工智能·深度学习·pinn
程序员老周66614 小时前
10.一文学会GPU与cuda原理,并从其原理来理解FlashAttention
人工智能·深度学习·语言模型·大模型·transformer·gpu算力·cuda