第二章 Hugging Face简介

第2章 Hugging Face简介

2.1 Hugging Face核心功能介绍

  • 模型、数据集存储库:Hugging Face Hub,主要用于托管模型和数据集,并详细描述模型名称、分类标签、模型的开源协议、arXiv.org的论文引用等。
  • 模型卡片:包括模型用途、制作模型的背景、模型的详细介绍、引用论文、使用说明、推理API等。
  • 推理API:文字形式的输入输出、上传图片和调用游览器获取麦克风实时音频。
  • Space应用:提供创建和部署机器学习应用的功能。

2.2 Hugging Face开源库

  • Transformers:下载和训练SOTA的预训练模型,支持PyTorch、TensorFlow和JAX。
  • Datasets:使用代码方法,轻松加载各种数据集。
  • Diffusers:扩散模型工具箱,使用各种噪声调度器,调节模型推理过程中的生成速度和质量。
  • Accelerate:支持在任何类型的设备上运行原本PyTorch训练脚本。
  • Optimum:Transformers扩展,性能优化工具。
  • timm:深度学习库,包含图像模型、优化器、调度器以及训练/验证脚本等。

2.3 Gradio工具介绍

Gradio用于构建机器学习和数据科学演示以及Web应用,能够通过浏览器拖放图片、粘贴文本、录制声音并进行演示互动。

python 复制代码
import gradio as gr

def greet(name):
    return "Hello " + name + "!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")

demo.launch()
相关推荐
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~8 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1