浅谈机器学习中的概率模型

浅谈机器学习中的概率模型

其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X = [ x 1 , x 2 , . . . . . x n ] X=[x_1,x_2,.....x_n] X=[x1,x2,.....xn],我们想知道它的类别,这个时候我们可以采用概率模型,比如贝叶斯模型,但是,我们知道样本 X X X属于什么类别,可能跟他的所有特征有关,同时,他的所有特征可能又存在着及其复杂的联系,所以如果我们真的考虑特征之间各种复杂的关系,在计算P(y|X)这个概率时往往很困难,因为我们在求解这样的一个概率模型时,还需要考虑样本特征之间的及其复杂的联系。

所以,我们所采用的方法往往是假设样本特征之间是独立的,这样,去求解我们的问题。而且往往这样的做法有时候也可以有着不错的效果。

之所以会有这样的原因,是因为比如两个特征之间有着正相关或者负相关的关系,那么通过上面的方法,虽然没有考虑特征之间的关系,但是特征对于样本分类的影响还是会很大程度的考虑其中,所以,往往我们假设特征之间是独立的,去进行建模往往也可以取得很好的成绩,因为在建模的时候,特征之间的相关性对于样本分类的影响,会被考虑到。

还一种在概率论中的处理在马尔可夫模型中可以体现,其在考虑一个序列之间的关系时,只考虑相邻的。

在博主看来,我们去进行一些概率计算的简化时,需要考虑是否这种简化对于我们的任务有着较大的影响,我们的模型是否在建模的时候,即使由于概率计算的简化导致信息流失,但是模型可以很大程度,去弥补这种信息流失。

我举一个很好的例子:

比如一个人 w-体重 70kg h-身高180cm f-颜值打分90 s-形象打分95 现在根据这个四个值去探讨这个人是否被一个陌生人习惯的概率

我们知道 身高 颜值打分 形象打分 这三个数值明显是有关系的,身高会影响形象打分,颜值也会影响形象打分,那假设这四个特征独立,其实并不影响我们的建模,比如一个人最终被人喜欢的打分模型为(理想的打分模型):

P=0.1w+h+1.4f+z

因为有一个潜在的关系: s=0.4h+0.6f+z,z为其他影响变量

那其实这个模型仍然是线性的,对于这个一个线性的模型,我们的模型仍然是可以学习到的。

比如:

我们可能会学习到这样的模型:

P=0.1w+0.6h+0.8f+s

这个模型其实和理想模型是等价的,是不是,其实 s h f 之间的相关性并没有影响我们求解出最好的模型。

但是这是在相关性比较简单的情况下可行,如果较为复杂,我们的模型也需要足够灵活,能够在模型中考虑到特征之间的相关性。

相关推荐
旗讯数字几秒前
旗讯OCR深度解析:智能解析与纸质文档识别抽取全链路解决方案
大数据·人工智能·文档数字化·数据结构化·旗讯ocr
sunfove1 分钟前
从数据到智能:机器学习核心方法的数学原理与全景解构
人工智能·机器学习
布谷鸟科技cookoo3 分钟前
布谷鸟科技走进小鹏汽车,解构远程驾驶全栈解决方案
人工智能·科技·ai·自动驾驶·边缘计算·远程驾驶
静听松涛1335 分钟前
门诊患者分诊引导流程图设计模板
大数据·论文阅读·人工智能·信息可视化·流程图·健康医疗
石去皿6 分钟前
从激活函数到超参搜索:一份“能落地”的深度学习手册
人工智能·深度学习
机器学习社区16 分钟前
《大模型面试宝典》(2026版) 正式发布!
人工智能·语言模型·自然语言处理·面试·职场和发展·面试题
体育分享_大眼16 分钟前
足球API接口与篮球API接口核心数据体系及标准化接入全指南
大数据·人工智能
拆房老料22 分钟前
实战复盘:自研 Office / PDF 文档处理平台的高坑预警与 AI Agent 时代架构思考
人工智能·架构·pdf·编辑器·开源软件
田井中律.25 分钟前
模型微调(Fine-Tuning)
人工智能
2501_9415079425 分钟前
使用_ssd300_训练蘑菇分类数据集经验总结_毒菇与食用菇自动识别研究
人工智能·分类·数据挖掘