模型部署踩坑(持续更新ing)

文章目录

模型部署踩坑

踩坑1

FLOPs不能衡量模型性能,因为FLOPs只是模型计算大小的单位

还需要考虑

  • 访存量
  • 跟计算无关的DNN部分(reshape, shortcut, nchw2nhwc等等)
  • DNN以外的部分(前处理、后处理这些)

踩坑2

不能够完全依靠TensorRT

TensorRT可以对模型做适当的优化,但是有上限

  • 计算密度低的1x1 conv, depthwise conv不会重构
  • GPU无法优化的地方会到CPU执行(可以手动修改代码实现部分,让部分cpu执行转到gpu执行)
  • 有些冗长的计算,TensorRT可能不能优化(直接修改代码实现部分)
  • 存在TensorRT尚未支持的算子(可以自己写plugin)
  • TensorRT不一定会分配Tensor Core(因为TensorRT kernel auto tuning会选择最合适的kernel)

踩坑3

CUDA Core和Tensor Core的使用

有的时候TensorRT并不会分配Tensor Core

  • kernel auto tuning自动选择最优解
  • 所以有时会出现类似于INT8的速度比FP16反而慢了
  • 使用Tensor Core需要让tensor size为8或者16的倍数

踩坑4

不能忽视 前处理/后处理 的overhead

  • 对于一些轻量的模型,相比于DNN推理部分,前处理/后处理可能会更耗时间
  • 因为有些前处理/后处理的复杂逻辑不适合GPU并行

解决办法:

  • 可以把前处理/后处理中可并行的地方拿出来让GPU并行(比如RGB2BGR, Normalization, resize,crop, NCHW2NHWC)
  • 可以在cpu上使用一些针对图像处理的优化库
    比如Halide(使用Halide进行blur, resize, crop, DBSCAN, sobel这些会比CPU快)

踩坑5

对使用TensorRT得到的推理引擎做benchmark和profiling

  • 使用TensorRT得到推理引擎并实现infer只是优化的第一步

  • 需要使用NVIDIA提供的benchmark tools进行profiling

    分析模型瓶颈在哪里

    分析模型可进一步优化的地方在哪里

    分析模型中多余的memory access在哪里

可以使用nsys, nvprof, dlprof, Nsight这些工具

相关推荐
workflower9 分钟前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
壹氿12 分钟前
Supersonic 新一代AI数据分析平台
人工智能·数据挖掘·数据分析
张较瘦_19 分钟前
[论文阅读] 人工智能 | 搜索增强LLMs的用户偏好与性能分析
论文阅读·人工智能
我不是小upper30 分钟前
SVM超详细原理总结
人工智能·机器学习·支持向量机
Yxh1813778455436 分钟前
抖去推--短视频矩阵系统源码开发
人工智能·python·矩阵
取酒鱼食--【余九】1 小时前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
Jamence1 小时前
多模态大语言模型arxiv论文略读(111)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
归去_来兮2 小时前
图神经网络(GNN)模型的基本原理
大数据·人工智能·深度学习·图神经网络·gnn
爱吃饼干的熊猫2 小时前
PlayDiffusion上线:AI语音编辑进入“无痕时代”
人工智能·语音识别