模型部署踩坑(持续更新ing)

文章目录

模型部署踩坑

踩坑1

FLOPs不能衡量模型性能,因为FLOPs只是模型计算大小的单位

还需要考虑

  • 访存量
  • 跟计算无关的DNN部分(reshape, shortcut, nchw2nhwc等等)
  • DNN以外的部分(前处理、后处理这些)

踩坑2

不能够完全依靠TensorRT

TensorRT可以对模型做适当的优化,但是有上限

  • 计算密度低的1x1 conv, depthwise conv不会重构
  • GPU无法优化的地方会到CPU执行(可以手动修改代码实现部分,让部分cpu执行转到gpu执行)
  • 有些冗长的计算,TensorRT可能不能优化(直接修改代码实现部分)
  • 存在TensorRT尚未支持的算子(可以自己写plugin)
  • TensorRT不一定会分配Tensor Core(因为TensorRT kernel auto tuning会选择最合适的kernel)

踩坑3

CUDA Core和Tensor Core的使用

有的时候TensorRT并不会分配Tensor Core

  • kernel auto tuning自动选择最优解
  • 所以有时会出现类似于INT8的速度比FP16反而慢了
  • 使用Tensor Core需要让tensor size为8或者16的倍数

踩坑4

不能忽视 前处理/后处理 的overhead

  • 对于一些轻量的模型,相比于DNN推理部分,前处理/后处理可能会更耗时间
  • 因为有些前处理/后处理的复杂逻辑不适合GPU并行

解决办法:

  • 可以把前处理/后处理中可并行的地方拿出来让GPU并行(比如RGB2BGR, Normalization, resize,crop, NCHW2NHWC)
  • 可以在cpu上使用一些针对图像处理的优化库
    比如Halide(使用Halide进行blur, resize, crop, DBSCAN, sobel这些会比CPU快)

踩坑5

对使用TensorRT得到的推理引擎做benchmark和profiling

  • 使用TensorRT得到推理引擎并实现infer只是优化的第一步

  • 需要使用NVIDIA提供的benchmark tools进行profiling

    分析模型瓶颈在哪里

    分析模型可进一步优化的地方在哪里

    分析模型中多余的memory access在哪里

可以使用nsys, nvprof, dlprof, Nsight这些工具

相关推荐
ZouZou老师1 分钟前
AI时代架构师如何重构研发体系
人工智能
小魔女千千鱼3 分钟前
openEuler AI 开发环境搭建 - Python/Anaconda/Jupyter 完整指南
人工智能
凌晨一点的秃头猪4 分钟前
seed随机种子
人工智能
ChatPPT_YOO5 分钟前
AIPPT工具主题生成深度对比:为什么ChatPPT更胜一筹?
人工智能·信息可视化·powerpoint·ai生成ppt·ppt制作
糖葫芦君5 分钟前
OneRec - V2 lazy decoder为什么效率高
人工智能·深度学习·llm
轻竹办公PPT7 分钟前
学校要求开题报告 PPT,有没有模板?
人工智能·python·powerpoint
大雾的小屋16 分钟前
【1-1】基于深度学习的滚动轴承故障诊断系统:从数据处理到交互式界面全流程解析
人工智能·pytorch·深度学习·系统架构·人机交互·pyqt·用户界面
一路向北he19 分钟前
你的注意力所在之处,决定了你的世界
人工智能
Mintopia19 分钟前
🧠 AI驱动的B端服务架构猜想
人工智能·安全·架构