模型部署踩坑(持续更新ing)

文章目录

模型部署踩坑

踩坑1

FLOPs不能衡量模型性能,因为FLOPs只是模型计算大小的单位

还需要考虑

  • 访存量
  • 跟计算无关的DNN部分(reshape, shortcut, nchw2nhwc等等)
  • DNN以外的部分(前处理、后处理这些)

踩坑2

不能够完全依靠TensorRT

TensorRT可以对模型做适当的优化,但是有上限

  • 计算密度低的1x1 conv, depthwise conv不会重构
  • GPU无法优化的地方会到CPU执行(可以手动修改代码实现部分,让部分cpu执行转到gpu执行)
  • 有些冗长的计算,TensorRT可能不能优化(直接修改代码实现部分)
  • 存在TensorRT尚未支持的算子(可以自己写plugin)
  • TensorRT不一定会分配Tensor Core(因为TensorRT kernel auto tuning会选择最合适的kernel)

踩坑3

CUDA Core和Tensor Core的使用

有的时候TensorRT并不会分配Tensor Core

  • kernel auto tuning自动选择最优解
  • 所以有时会出现类似于INT8的速度比FP16反而慢了
  • 使用Tensor Core需要让tensor size为8或者16的倍数

踩坑4

不能忽视 前处理/后处理 的overhead

  • 对于一些轻量的模型,相比于DNN推理部分,前处理/后处理可能会更耗时间
  • 因为有些前处理/后处理的复杂逻辑不适合GPU并行

解决办法:

  • 可以把前处理/后处理中可并行的地方拿出来让GPU并行(比如RGB2BGR, Normalization, resize,crop, NCHW2NHWC)
  • 可以在cpu上使用一些针对图像处理的优化库
    比如Halide(使用Halide进行blur, resize, crop, DBSCAN, sobel这些会比CPU快)

踩坑5

对使用TensorRT得到的推理引擎做benchmark和profiling

  • 使用TensorRT得到推理引擎并实现infer只是优化的第一步

  • 需要使用NVIDIA提供的benchmark tools进行profiling

    分析模型瓶颈在哪里

    分析模型可进一步优化的地方在哪里

    分析模型中多余的memory access在哪里

可以使用nsys, nvprof, dlprof, Nsight这些工具

相关推荐
chatexcel3 小时前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化
bylander4 小时前
【AI学习】TM Forum《Autonomous Networks Implementation Guide》快速理解
人工智能·学习·智能体·自动驾驶网络
Techblog of HaoWANG4 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace01234 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_941418554 小时前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔4 小时前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪4 小时前
Clawbot (OpenClaw)简介
人工智能
2501_933329555 小时前
品牌公关AI化实践:Infoseek舆情系统技术架构解析
人工智能·自然语言处理
咋吃都不胖lyh5 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
xiucai_cs5 小时前
AI RAG 本地知识库实战
人工智能·知识库·dify·rag·ollama