模型部署踩坑(持续更新ing)

文章目录

模型部署踩坑

踩坑1

FLOPs不能衡量模型性能,因为FLOPs只是模型计算大小的单位

还需要考虑

  • 访存量
  • 跟计算无关的DNN部分(reshape, shortcut, nchw2nhwc等等)
  • DNN以外的部分(前处理、后处理这些)

踩坑2

不能够完全依靠TensorRT

TensorRT可以对模型做适当的优化,但是有上限

  • 计算密度低的1x1 conv, depthwise conv不会重构
  • GPU无法优化的地方会到CPU执行(可以手动修改代码实现部分,让部分cpu执行转到gpu执行)
  • 有些冗长的计算,TensorRT可能不能优化(直接修改代码实现部分)
  • 存在TensorRT尚未支持的算子(可以自己写plugin)
  • TensorRT不一定会分配Tensor Core(因为TensorRT kernel auto tuning会选择最合适的kernel)

踩坑3

CUDA Core和Tensor Core的使用

有的时候TensorRT并不会分配Tensor Core

  • kernel auto tuning自动选择最优解
  • 所以有时会出现类似于INT8的速度比FP16反而慢了
  • 使用Tensor Core需要让tensor size为8或者16的倍数

踩坑4

不能忽视 前处理/后处理 的overhead

  • 对于一些轻量的模型,相比于DNN推理部分,前处理/后处理可能会更耗时间
  • 因为有些前处理/后处理的复杂逻辑不适合GPU并行

解决办法:

  • 可以把前处理/后处理中可并行的地方拿出来让GPU并行(比如RGB2BGR, Normalization, resize,crop, NCHW2NHWC)
  • 可以在cpu上使用一些针对图像处理的优化库
    比如Halide(使用Halide进行blur, resize, crop, DBSCAN, sobel这些会比CPU快)

踩坑5

对使用TensorRT得到的推理引擎做benchmark和profiling

  • 使用TensorRT得到推理引擎并实现infer只是优化的第一步

  • 需要使用NVIDIA提供的benchmark tools进行profiling

    分析模型瓶颈在哪里

    分析模型可进一步优化的地方在哪里

    分析模型中多余的memory access在哪里

可以使用nsys, nvprof, dlprof, Nsight这些工具

相关推荐
systeminof8 分钟前
从类比到迁移:研究解析大脑“举一反三”的神经基础
人工智能
波动几何22 分钟前
价格运动三大定律:从市场混沌到几何必然性
人工智能
志栋智能1 小时前
AI驱动的系统自动化巡检:重塑IT基石的智慧“守护神”
大数据·运维·人工智能·云原生·自动化
思通数科人工智能大模型1 小时前
电力巡检无人机和工程车“空地一体”AI全域巡检方案
人工智能·目标检测·计算机视觉·数据挖掘·无人机·知识图谱·零售
脑海科技实验室1 小时前
Nature子刊:新研究!人工智能提供更清晰的功能MRI脑数据
人工智能·fmri
qyr67891 小时前
便携式太阳能折叠板市场白皮书与未来趋势展望
大数据·人工智能·物联网·市场分析·市场报告·便携式太阳能折叠板·太阳能折叠板
yunhuibin2 小时前
AlexNet网络学习
人工智能·python·深度学习·神经网络
肾透侧视攻城狮2 小时前
《从fit()到分布式训练:深度解锁TensorFlow模型训练全栈技能》
人工智能·深度学习·tensorflow 模型训练·模型训练中的fit方法·自定义训练循环·回调函数使用·混合精度/分布式训练
索木木2 小时前
大模型训练CP切分(与TP、SP结合)
人工智能·深度学习·机器学习·大模型·训练·cp·切分
DevilSeagull3 小时前
C语言: 动态内存管理
人工智能·语言模型·自然语言处理