PyTorch 中张量运算广播

TLDR

右对齐,空补一,从左往右依维运算
[m] + [x, y] = [m +x, m + y]

正文

以如下 a b 两个 tensor 计算为例

python 复制代码
a = torch.tensor([
    [1],
    [2],
    [3],
])
b = torch.tensor([
    [
        [1, 2, 3],
    ],
    [
        [4, 5, 6],
    ],
    [
        [7, 8, 9],
    ],
])
# a.shape = (3, 1)
# b.shape = (3, 1, 3)

首先将两个 tensor 的 shape 右对齐
a( , 3, 1)
b(3, 1, 3)

判断两个 tensor 是否满足广播规则

  • tensor 至少有一个维度(比如 torch.tensor((0,)) 便不符合本要求)
  • 检查上一步对齐的 tensor shape,要求两个 tensor 对应维度的大小:要么相同;要么其中一个为 1;要么其中一个为空
  • 如果满足上述规则,则继续,否则报错

将对齐后空缺的维度设置为 1
a(1, 3, 1)
b(3, 1, 3)

其实就是对 a 进行了扩维,此时两个 tensor 为:

python 复制代码
a = torch.tensor([
    [
        [1],
        [2],
        [3],
    ],
])
b = torch.tensor([
    [
        [1, 2, 3],
    ],
    [
        [4, 5, 6],
    ],
    [
        [7, 8, 9],
    ],
])
# a.shape = (1, 3, 1)
# b.shape = (3, 1, 3)

从左往右对两个 tensor 的每一个维度进行运算,按照以下规则

  • 如果大小相同,则直接进行运算即可(一一对应)
  • 如果其中一个大小为 1,则使用这个元素与另一个 tensor 当前维度下的每个元素进行运算(本质是一个递归操作)

例如计算 a + b (这两个 tensor 已经经过上述步骤处理,即维度已经相同)

python 复制代码
# 1. 因为 a.shape[0] == 1,所以将 a[0] 分别与 b[0]、b[1]、b[2] 相加
[
	a[0] + b[0],
	a[0] + b[1],
	a[0] + b[2],
]

# 2. 接下来继续往后计算,以 a[0] + b[0] 为例
#    因为 a[0].shape[0] = 3, b[0].shape[0] = 1,
#    所以将 b[0][0] 分别与 a[0][0]、a[0][1]、a[0][2] 相加
[
	[	# a[0] + b[0]
		a[0][0] + b[0][0],
		a[0][1] + b[0][0],
		a[0][2] + b[0][0],
	],
	[	# a[0] + b[1]
		a[0][0] + b[1][0],
		a[0][1] + b[1][0],
		a[0][2] + b[1][0],
	],
	[	# a[0] + b[2]
		a[0][0] + b[2][0],
		a[0][1] + b[2][0],
		a[0][2] + b[2][0],
	],
]

# 3. 继续往后计算,以 a[0][0] + b[0][0] 为例
#    因为 a[0][0].shape[0] == 1,
#    所以将 a[0][0][0] 分别与 b[0][0][0]、b[0][0][1]、b[0][0][2] 相加
[
	[	# a[0] + b[0]
		[ 	# a[0][0] + b[0][0]
			a[0][0][0] + b[0][0][0],
			a[0][0][0] + b[0][0][1],
			a[0][0][0] + b[0][0][2],
		],
		[ 	# a[0][1] + b[0][0]
			a[0][1][0] + b[0][0][0],
			a[0][1][0] + b[0][0][1],
			a[0][1][0] + b[0][0][2],
		],
		[ 	# a[0][2] + b[0][0]
			a[0][2][0] + b[0][0][0],
			a[0][2][0] + b[0][0][1],
			a[0][2][0] + b[0][0][2],
		],
	],
	[	# a[0] + b[1]
		[ 	# a[0][0] + b[1][0]
			a[0][0][0] + b[1][0][0],
			a[0][0][0] + b[1][0][1],
			a[0][0][0] + b[1][0][2],
		],
		[ 	# a[0][1] + b[1][0]
			a[0][1][0] + b[1][0][0],
			a[0][1][0] + b[1][0][1],
			a[0][1][0] + b[1][0][2],
		],
		[ 	# a[0][2] + b[1][0]
			a[0][2][0] + b[1][0][0],
			a[0][2][0] + b[1][0][1],
			a[0][2][0] + b[1][0][2],
		],
	],
	[	# a[0] + b[2]
		[ 	# a[0][0] + b[2][0]
			a[0][0][0] + b[2][0][0],
			a[0][0][0] + b[2][0][1],
			a[0][0][0] + b[2][0][2],
		],
		[ 	# a[0][1] + b[2][0]
			a[0][1][0] + b[2][0][0],
			a[0][1][0] + b[2][0][1],
			a[0][1][0] + b[2][0][2],
		],
		[ 	# a[0][2] + b[2][0]
			a[0][2][0] + b[2][0][0],
			a[0][2][0] + b[2][0][1],
			a[0][2][0] + b[2][0][2],
		],
	],
]

总结

右对齐空补一 ,从左往右依维递归 )运算。

一个 tensor 的某个维度大小为 1 时的计算规则:[1] + [2, 3, 4] = [1 + 2, 1 + 3, 1 + 4]

《PyTorch 官方文档:BROADCASTING SEMANTICS》

相关推荐
深蓝海拓1 分钟前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
美林数据Tempodata10 分钟前
李飞飞最新论文深度解读:从语言到世界,空间智能将重写AI的未来十年
人工智能·ai·空间智能
东哥说-MES|从入门到精通13 分钟前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
小殊小殊14 分钟前
DeepSeek为什么这么慢?
人工智能·深度学习
极客BIM工作室30 分钟前
从静态到动态:Sora与文生图潜在扩散模型的技术同异与AIGC演进逻辑
人工智能·aigc
松果财经34 分钟前
长沙的青年友好,五年见“城”心
人工智能
秋邱36 分钟前
智启未来:AGI 教育融合 × 跨平台联盟 × 个性化空间,重构教育 AI 新范式开篇:一场 “教育 ×AI” 的范式革命
人工智能·python·重构·推荐算法·agi
爱吃泡芙的小白白41 分钟前
vscode、anaconda、git、python配置安装(自用)
ide·git·vscode·python·anaconda·学习记录
谷隐凡二42 分钟前
Kubernetes主从架构简单解析:基于Python的模拟实现
python·架构·kubernetes
黑客思维者42 分钟前
ChatGPT软件开发提示词库:开发者常用150个中文提示词分类与应用场景设计
人工智能·chatgpt·提示词·软件开发